The spectral representation of two-point boundary-value problems for third-order linear evolution partial differential equations

Author(s):  
Beatrice Pelloni

We use a spectral transform method to study general boundary-value problems for third-order, linear, evolution partial differential equations with constant coefficients, posed on a finite space domain. We show how this method yields a simple characterization of the discrete spectrum of the associated spatial differential operator, and discuss the obstructions that arise when trying to represent the solution of such a problem as a series of exponential functions. We first review the theory for second-order two-point boundary-value problems, and present an alternative way to derive the classical series representation, as well as an equivalent integral representation, which generally involves complex contours. We illustrate the advantages of the integral representation by studying in some detail the case where Robin-type boundary conditions are prescribed. We then consider the third-order case and show that the integral representation is in general not equivalent to a discrete series representation, justifying a posteriori the failure of some of the classical approaches. We illustrate the third-order case in detail, using the example of the equation q t + q xxx =0 for various types of boundary conditions. In contrast with the second-order case, the qualitative properties of the spectrum of the associated spatial differential operator depend in this case not only on the equation but also on the type of boundary conditions. In particular, the solution appears to admit a series representation only when the prescribed boundary conditions couple the two endpoints of the interval.

2014 ◽  
Vol 58 (1) ◽  
pp. 183-197 ◽  
Author(s):  
John R. Graef ◽  
Johnny Henderson ◽  
Rodrica Luca ◽  
Yu Tian

AbstractFor the third-order differential equationy′″ = ƒ(t, y, y′, y″), where, questions involving ‘uniqueness implies uniqueness’, ‘uniqueness implies existence’ and ‘optimal length subintervals of (a, b) on which solutions are unique’ are studied for a class of two-point boundary-value problems.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ji Lin ◽  
Yuhui Zhang ◽  
Chein-Shan Liu

AbstractFor nonlinear third-order three-point boundary value problems (BVPs), we develop two algorithms to find solutions, which automatically satisfy the specified three-point boundary conditions. We construct a boundary shape function (BSF), which is designed to automatically satisfy the boundary conditions and can be employed to develop new algorithms by assigning two different roles of free function in the BSF. In the first algorithm, we let the free functions be complete functions and the BSFs be the new bases of the solution, which not only satisfy the boundary conditions automatically, but also can be used to find solution by a collocation technique. In the second algorithm, we let the BSF be the solution of the BVP and the free function be another new variable, such that we can transform the BVP to a corresponding initial value problem for the new variable, whose initial conditions are given arbitrarily and terminal values are determined by iterations; hence, we can quickly find very accurate solution of nonlinear third-order three-point BVP through a few iterations. Numerical examples confirm the performance of the new algorithms.


1995 ◽  
Vol 2 (3) ◽  
pp. 323-335
Author(s):  
V. G. Sushko ◽  
N. Kh. Rozov

Abstract The method of barriers is used to justify asymptotic representations of solutions of two-point boundary value problems for singularly perturbed quasilinear equations of the second and the third order. This paper is a continuation of [Rozov and Sushko, Georgian Math. J. 2: 99-110, 1995].


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Qian Ge ◽  
Xiaoping Zhang

The numerical solution for a kind of third-order boundary value problems is discussed. With the barycentric rational interpolation collocation method, the matrix form of the third-order two-point boundary value problem is obtained, and the convergence and error analysis are obtained. In addition, some numerical examples are reported to confirm the theoretical analysis.


2021 ◽  
Vol 182 ◽  
pp. 411-427
Author(s):  
Nadirah Mohd Nasir ◽  
Zanariah Abdul Majid ◽  
Fudziah Ismail ◽  
Norfifah Bachok

Axioms ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 62
Author(s):  
Ravi P. Agarwal ◽  
Petio S. Kelevedjiev ◽  
Todor Z. Todorov

Under barrier strips type assumptions we study the existence of C 3 [ 0 , 1 ] —solutions to various two-point boundary value problems for the equation x ‴ = f ( t , x , x ′ , x ″ ) . We give also some results guaranteeing positive or non-negative, monotone, convex or concave solutions.


Sign in / Sign up

Export Citation Format

Share Document