High-latitude ionospheric response to co-rotating interaction region- and coronal mass ejection-driven geomagnetic storms revealed by GPS tomography and ionosondes

Author(s):  
D. Pokhotelov ◽  
P. T. Jayachandran ◽  
C. N. Mitchell ◽  
M. H. Denton

Positive ionospheric anomalies induced in the polar cap region by co-rotating interaction region (CIR)- and coronal mass ejection (CME)-driven geomagnetic storms are analysed using four-dimensional tomographic reconstructions of the ionospheric plasma density based on measurements of the total electron content along ray paths of GPS signals. The results of GPS tomography are compared with ground-based observations of F region plasma density by digital ionosondes located in the Canadian Arctic. It is demonstrated that CIR- and CME-driven storms can produce large-scale polar cap anomalies of similar morphology in the form of the tongue of ionization (TOI) that appears on the poleward edge of the mid-latitude dayside storm-enhanced densities in positive ionospheric storms. The CIR-driven event of 14–16 October 2002 was able to produce ionospheric anomalies (TOI) comparable to those produced by the CME-driven storms of greater Dst magnitude. From the comparison of tomographic reconstructions and ionosonde data with solar wind measurements, it appears that the formation of large-scale polar cap anomalies is controlled by the orientation of the interplanetary magnetic field (IMF) with the TOI forming during the periods of extended southward IMF under conditions of high solar wind velocity.

2017 ◽  
Vol 35 (6) ◽  
pp. 1309-1326 ◽  
Author(s):  
Patricia Mara de Siqueira Negreti ◽  
Eurico Rodrigues de Paula ◽  
Claudia Maria Nicoli Candido

Abstract. Total electron content (TEC) is extensively used to monitor the ionospheric behavior under geomagnetically quiet and disturbed conditions. This subject is of greatest importance for space weather applications. Under disturbed conditions the two main sources of electric fields, which are responsible for changes in the plasma drifts and for current perturbations, are the short-lived prompt penetration electric fields (PPEFs) and the longer-lasting ionospheric disturbance dynamo (DD) electric fields. Both mechanisms modulate the TEC around the globe and the equatorial ionization anomaly (EIA) at low latitudes. In this work we computed vertical absolute TEC over the low latitude of South America. The analysis was performed considering HILDCAA (high-intensity, long-duration, continuous auroral electrojet (AE) activity) events and geomagnetic storms. The characteristics of storm-time TEC and HILDCAA-associated TEC will be presented and discussed. For both case studies presented in this work (March and August 2013) the HILDCAA event follows a geomagnetic storm, and then a global scenario of geomagnetic disturbances will be discussed. Solar wind parameters, geomagnetic indices, O ∕ N2 ratios retrieved by GUVI instrument onboard the TIMED satellite and TEC observations will be analyzed and discussed. Data from the RBMC/IBGE (Brazil) and IGS GNSS networks were used to calculate TEC over South America. We show that a HILDCAA event may generate larger TEC differences compared to the TEC observed during the main phase of the precedent geomagnetic storm; thus, a HILDCAA event may be more effective for ionospheric response in comparison to moderate geomagnetic storms, considering the seasonal conditions. During the August HILDCAA event, TEC enhancements from  ∼  25 to 80 % (compared to quiet time) were observed. These enhancements are much higher than the quiet-time variability observed in the ionosphere. We show that ionosphere is quite sensitive to solar wind forcing and considering the events studied here, this was the most important source of ionospheric responses. Furthermore, the most important source of TEC changes were the long-lasting PPEFs observed on August 2013, during the HILDCAA event. The importance of this study relies on the peculiarity of the region analyzed characterized by high declination angle and ionospheric gradients which are responsible for creating a complex response during disturbed periods.


Radio Science ◽  
2020 ◽  
Vol 55 (11) ◽  
Author(s):  
Roshan Kumar Mishra ◽  
Binod Adhikari ◽  
Narayan Prasad Chapagain ◽  
Rabin Baral ◽  
Priyanka Kumari Das ◽  
...  

2007 ◽  
Vol 25 (2) ◽  
pp. 507-517 ◽  
Author(s):  
L. Rosenqvist ◽  
A. Kullen ◽  
S. Buchert

Abstract. The shock arrival of an Interplanetary Coronal Mass Ejection (ICME) at ~09:50 UT on 22 November 1997 resulted in the development of an intense (Dst<−100 nT) geomagnetic storm at Earth. In the early, quiet phase of the storm, in the sheath region of the ICME, an unusual large spiral structure (diameter of ~1000 km) was observed at very high latitudes by the Polar UVI instrument. The evolution of this structure started as a polewardly displaced auroral bulge which further developed into the spiral structure spreading across a large part of the polar cap. This study attempts to examine the cause of the chain of events that resulted in the giant auroral spiral. During this period the interplanetary magnetic field (IMF) was dominantly northward (Bz>25 nT) with a strong duskward component (By>15 nT) resulting in a highly twisted tail plasma sheet. Geotail was located at the equatorial dawnside magnetotail flank and observed accelerated plasma flows exceeding the solar wind bulk velocity by almost 60%. These flows are observed on the magnetosheath side of the magnetopause and the acceleration mechanism is proposed to be typical for strongly northward IMF. Identified candidates to the cause of the spiral structure include a By induced twisted magnetotail configuration, the development of magnetopause surface waves due to the enhanced pressure related to the accelerated magnetosheath flows aswell as the formation of additional magnetopause deformations due to external solar wind pressure changes. The uniqeness of the event indicate that most probably a combination of the above effects resulted in a very extreme tail topology. However, the data coverage is insufficient to fully investigate the physical mechanism behind the observations.


Solar Physics ◽  
2020 ◽  
Vol 295 (9) ◽  
Author(s):  
Ravindra T. Desai ◽  
Han Zhang ◽  
Emma E. Davies ◽  
Julia E. Stawarz ◽  
Joan Mico-Gomez ◽  
...  

Abstract Predicting the large-scale eruptions from the solar corona and their propagation through interplanetary space remains an outstanding challenge in solar- and helio-physics research. In this article, we describe three-dimensional magnetohydrodynamic simulations of the inner heliosphere leading up to and including the extreme interplanetary coronal mass ejection (ICME) of 23 July 2012, developed using the code PLUTO. The simulations are driven using the output of coronal models for Carrington rotations 2125 and 2126 and, given the uncertainties in the initial conditions, are able to reproduce an event of comparable magnitude to the 23 July ICME, with similar velocity and density profiles at 1 au. The launch time of this event is then varied with regards to an initial 19 July ICME and the effects of solar wind preconditioning are found to be significant for an event of this magnitude and to decrease over a time-window consistent with the ballistic refilling of the depleted heliospheric sector. These results indicate that the 23 July ICME was mostly unaffected by events prior, but would have traveled even faster had it erupted closer in time to the 19 July event where it would have experienced even lower drag forces. We discuss this systematic study of solar wind preconditioning in the context of space weather forecasting.


2009 ◽  
Vol 27 (4) ◽  
pp. 1605-1612 ◽  
Author(s):  
C. Borries ◽  
N. Jakowski ◽  
V. Wilken

Abstract. This work is a first statistical analysis of large scale traveling ionospheric disturbances (LSTID) in Europe using total electron content (TEC) data derived from GNSS measurements. The GNSS receiver network in Europe is dense enough to map the ionospheric perturbation TEC with high horizontal resolution. The derived perturbation TEC maps are analysed studying the effect of space weather events on the ionosphere over Europe. Equatorward propagating storm induced wave packets have been identified during several geomagnetic storms. Characteristic parameters such as velocity, wavelength and direction were estimated from the perturbation TEC maps. Showing a mean wavelength of 2000 km, a mean period of 59 min and a phase speed of 684 ms−1 in average, the perturbations are allocated to LSTID. The comparison to LSTID observed over Japan shows an equal wavelength but a considerably faster phase speed. This might be attributed to the differences in the distance to the auroral region or inclination/declination of the geomagnetic field lines. The observed correlation between the LSTID amplitudes and the Auroral Electrojet (AE) indicates that most of the wave like perturbations are exited by Joule heating. Particle precipitation effects could not be separated.


2008 ◽  
Vol 35 (1) ◽  
pp. 3 ◽  
Author(s):  
MARCELO TOMIO MATSUOKA ◽  
PAULO DE OLIVEIRA CAMARGO ◽  
INEZ STACIA

The error due to the ionosphere in the GPS observables depends on the Total Electron Content (TEC) in the ionospheric layer. The TEC varies regularly in time and space in relation to the sunspot number, the season, the local time, the geographic position, and others. However, the TEC can suffer abrupt modifications in its behavior due to the occurrence of intense magnetic storm. On 28 October 2003, at 1110 UT, a major solar flare took place from a sunspot directly in line with the Earth. A coronal mass ejection was observed to leave the Sun in the direction of the Earth, causing an intense magnetic storm that started at 0611 UT of the following day. In this paper, GPS data from RBMC and IGS network and Digisonde data were used, to analyze the influence of the intense magnetic storm that occurred on October 29, 2003 in the behavior of TEC and in the performance of the point positioning in the Brazilian region


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Xin Wan ◽  
Chao Xiong ◽  
Shunzu Gao ◽  
Fuqing Huang ◽  
Yiwen Liu ◽  
...  

AbstractRecent studies revealed that the long-lasting daytime ionospheric enhancements of Total Electron Content (TEC) were sometimes observed in the Asian sector during the recovery phase of geomagnetic storms (e.g., Lei (J Geophys Res Space Phys 123: 3217–3232, 2018), Li (J Geophys Res Space Phys 125: e2020JA028238, 2020). However, they focused only on the dayside ionosphere, and no dedicated studies have been performed to investigate the nighttime ionospheric behavior during such kinds of storm recovery phases. In this study, we focused on two geomagnetic storms that happened on 7–8 September 2017 and 25–26 August 2018, which showed the prominent daytime TEC enhancements in the Asian sector during their recovery phases, to explore the nighttime large-scale ionospheric responses as well as the small-scale Equatorial Plasma Irregularities (EPIs). It is found that during the September 2017 storm recovery phase, the nighttime ionosphere in the American sector is largely depressed, which is similar to the daytime ionospheric response in the same longitude sector; while in the Asian sector, only a small TEC increase is observed at nighttime, which is much weaker than the prominent daytime TEC enhancement in this longitude sector. During the recovery phase of the August 2018 storm, a slight TEC increase is observed on the night side at all longitudes, which is also weaker than the prominent daytime TEC enhancement. For the small-scale EPIs, they are enhanced and extended to higher latitudes during the main phase of both storms. However, during the recovery phases of the first storm, the EPIs are largely enhanced and suppressed in the Asian and American sectors, respectively, while no prominent nighttime EPIs are observed during the second storm recovery phase. The clear north–south asymmetry of equatorial ionization anomaly crests during the second storm should be responsible for the suppression of EPIs during this storm. In addition, our results also suggest that the dusk side ionospheric response could be affected by the daytime ionospheric plasma density/TEC variations during the recovery phase of geomagnetic storms, which further modulates the vertical plasma drift and plasma gradient. As a result, the growth rate of post-sunset EPIs will be enhanced or inhibited.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4325
Author(s):  
Kacper Kotulak ◽  
Andrzej Krankowski ◽  
Adam Froń ◽  
Paweł Flisek ◽  
Ningbo Wang ◽  
...  

Geomagnetic storms—triggered by the interaction between Earth’s magnetosphere and interplanetary magnetic field, driven by solar activity—are important for many Earth-bound aspects of life. Serious events may impact the electroenergetic infrastructure, but even weaker storms generate noticeable irregularities in the density of ionospheric plasma. Ionosphere electron density gradients interact with electromagnetic radiation in the radiofrequency domain, affecting sub- and trans-ionospheric transmissions. The main objective of the manuscript is to find key features of the storm-induced plasma density behaviour irregularities in regard to the event’s magnitude and general geomagnetic conditions. We also aim to set the foundations for the mid-latitude ionospheric plasma density now-casting irregularities. In the manuscript, we calculate the GPS+GLONASS-derived rate of TEC (total electron content) index (ROTI) for the meridional sector of 10–20∘ E, covering the latitudes between 40 and 70∘ N. Such an approach reveals equatorward spread of the auroral TEC irregularities reaching down to mid-latitudes. We have assessed the ROTI performance for 57 moderate-to-severe storms that occurred during solar cycle 24 and analyzed their behaviors in regard to the geomagnetic conditions (described by Kp, Dst, AE, Sym-H and PC indices).


2019 ◽  
Author(s):  
Regia Pereira Silva ◽  
Clezio Marcos Denardini ◽  
Manilo Soares Marques ◽  
Laysa Cristina Araújo Resende ◽  
Juliano Moro ◽  
...  

Abstract. The High-Intensity Long-Duration and Continuous AE Activities (HILDCAA) intervals are capable of causing a global disturbance in the terrestrial ionosphere. However, the ionospheric storms' behavior due to these geomagnetic activity forms is still not widely understood. In this study, we seek to comprise the HILDCAAs disturbance time effects in the Total Electron Content (TEC) values with respect to the quiet days' pattern analyzing local time and seasonal dependences, and the influences of the solar wind velocity to a sample of ten intervals occurred in 2015 and 2016 years. The main results showed that the hourly distribution of the disturbance TEC may vary substantially between one interval and another. Doing a comparative to geomagnetic storms, while the positive ionospheric storms are more pronounced in the winter, this season presents less geoeffectiveness or almost none to HILDCAA intervals. It was find an equinoctial anomaly, since the equinoxes represent more ionospheric TEC responses during HILDCAA intervals than the solstices. Regarding to the solar wind velocities, although HILDCAA intervals are associated to High Speed Streams, this association does not present a direct relation regards to TEC disturbances in low and equatorial latitudes.


Sign in / Sign up

Export Citation Format

Share Document