scholarly journals On the dynamic nature of azimuthal thermoacoustic modes in annular gas turbine combustion chambers

Author(s):  
Nicolas Noiray ◽  
Bruno Schuermans

This paper deals with the dynamics of standing and rotating azimuthal thermoacoustic modes in annular combustion chambers. Simultaneous acoustic measurements have been made at multiple circumferential positions in an annular gas turbine combustion chamber. A detailed statistical analysis of the spatial Fourier amplitudes extracted from these data reveals that the acoustic modes are continuously switching between standing, clockwise and counter-clockwise travelling waves. A theoretical framework from which the modal dynamics can be explained is proposed and supported by real gas turbine data. The stochastic differential equations that govern these systems have been derived and used as a basis for system identification of the measured engine data. The model describes the probabilities of the two azimuthal wave components as a function of the random source intensity, the asymmetry in the system and the strength of the thermoacoustic interaction. The solution of the simplified system is in good agreement with experimental observations on a gas turbine combustion chamber.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Serhiy Serbin ◽  
Kateryna Burunsuz

AbstractInvestigations of the working process in a gas turbine combustion chamber with ecological and energy steam injection operating on liquid fuel are conducted. The mathematical model of the aerodynamic processes and liquid fuel combustion in similar burning devices based on the numerical solution of the system of conservation and transport equations for a multi-component chemically reactive turbulent system is developed. The influence of the relative steam mass flow rate (the ratio of the sum of the mass flow rates of ecological and energy steam to the fuel consumption) on the combustion chamber’s emission characteristics is determined. The obtained results can be used for parameter selection and optimization of promising high-temperature gas turbine combustion chambers with steam injection operating on liquid fuels.


Author(s):  
A. Lienert ◽  
O. Schmoch

Large gas turbine combustion chambers, being arranged outside of the unit, exhibit quite a lot of advantages with respect to combustion. Moreover, they are characterized by a long life of all components. Thus, in case of such gas turbine units the maintenance and inspection intervals are relatively large being not determined by the combustion chamber or combustion chamber components. There are not many failures. They may easily be recognized at their initial stage and can be eliminated quickly as the inside is accessible via a manhole. This in turn has a positive effect on overall maintenance and service cost. Besides, this easy accessibility allows for a direct examination of the turbine inner casing and the first turbine stages in case of maintenanced works. Experiences are based on the operation of more than 100 gas turbines of such a kind, whereby several have been run at peak load with more than 5000 starts, others at base load with more than 100,000 operating hours.


1954 ◽  
Vol 58 (528) ◽  
pp. 813-825
Author(s):  
J. G. Sharp

SummaryThe performance of aero gas turbine combustion chambers is discussed under the following headings : Combustion efficiency, combustion stability, ease of ignition, deposits, exhaust temperature variation, and smooth combustion. It is shown that, as assessed by these criteria, combustion chamber performance can be significantly affected by fuel characteristics; also that the effects of fuel type can be greatly modified by equipment design changes. The conclusion is that most of the problems- aggravated by fuel characteristics are better solved by modifications to equipment, if fuel availability and cost are not to be adversely affected.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Serhiy Serbin ◽  
Kateryna Burunsuz

Abstract Investigations of the working process in a gas turbine combustion chamber with ecological and energy steam injection operating on liquid fuel are conducted. The mathematical model of the aerodynamic processes and liquid fuel combustion in similar burning devices based on the numerical solution of the system of conservation and transport equations for a multi-component chemically reactive turbulent system is developed. The influence of the relative steam mass flow rate (the ratio of the sum of the mass flow rates of ecological and energy steam to the fuel consumption) on the combustion chamber’s emission characteristics is determined. The obtained results can be used for parameter selection and optimization of promising high-temperature gas turbine combustion chambers with steam injection operating on liquid fuels.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Yinli Xiao ◽  
Zupeng Wang ◽  
Zhengxin Lai ◽  
Wenyan Song

The development of high-performance aeroengine combustion chambers strongly depends on the accuracy and reliability of efficient numerical models. In the present work, a reacting solver with a steady laminar flamelet model and spray model has been developed in OpenFOAM and the solver details are presented. The solver is firstly validated by Sandia/ETH-Zurich flames. Furthermore, it is used to simulate nonpremixed kerosene/air spray combustion in an aeroengine combustion chamber with the RANS method. A comparison with available experimental data shows good agreement and validates the capability of the new developed solver in OpenFOAM.


2018 ◽  
Vol 65 (11) ◽  
pp. 806-817 ◽  
Author(s):  
L. A. Bulysova ◽  
A. L. Berne ◽  
V. D. Vasil’ev ◽  
M. N. Gutnik ◽  
M. M. Gutnik

Sign in / Sign up

Export Citation Format

Share Document