scholarly journals Emergence of colour symmetry in free-vibration acoustic resonance of a nonlinear hyperelastic material

Author(s):  
Ryuichi Tarumi

We investigated free-vibration acoustic resonance (FVAR) of two-dimensional St Venant–Kirchhoff-type hyperelastic materials and revealed the existence and structure of colour symmetry embedded therein. The hyperelastic material is isotropic and frame indifferent and includes geometrical nonlinearity in its constitutive equation. The FVAR state is formulated using the principle of stationary action with a subsidiary condition. Numerical analysis based on the Ritz method revealed the existence of four types of nonlinear FVAR modes associated with the irreducible representations of a linearized system. Projection operation revealed that the FVAR modes can be classified on the basis of a single colour (black or white) and three types of bicolour (black and white) magnetic point groups: , , and . These results demonstrate that colour symmetry naturally arises in the finite amplitude nonlinear FVAR modes, and its vibrational symmetries are explained in terms of magnetic point groups rather than the irreducible representations that have been used for linearized systems. We also predicted a grey colour nonlinear FVAR mode which cannot be derived from a linearized system.

2014 ◽  
Vol 53 (7S) ◽  
pp. 07KB09 ◽  
Author(s):  
Ryuichi Tarumi ◽  
Shinpei Yamada ◽  
Yoji Shibutani

Author(s):  
Peng Shi ◽  
Rakesh K. Kapania

The free vibration of curvilinearly stiffened doubly curved shallow shells is investigated by the Ritz method. Base on the first order shear deformation shell theory and Timoshenko’s 3-D curved beam theory, the strain and kinetic energies of the stiffened shells are introduced. Numerical results with different geometrical shells and boundary conditions, and different stiffener locations and curvatures are analyzed to verify the feasibility of the presented Ritz method for solving the problems. The results show good agreement with those using the FE method.


Author(s):  
Yoshihiro Narita

Abstract The free vibration behavior of rectangular plates provides important technical information in structural design, and the natural frequencies are primarily affected by the boundary conditions as well as aspect and thickness ratios. One of the three classical edge conditions, i.e., free, simple supported and clamped edges, may be used to model the constraint along an edge of the rectangle. Along the entire boundary with four edges, there exist a wide variety of combinations in the edge conditions, each yielding different natural frequencies and mode shapes. For counting the total number of possible combinations, the present paper introduces the Polya counting theory in combinatorial mathematics, and formulas are derived for counting the exact numbers. A modified Ritz method is then developed to calculate natural frequencies of anisotropic rectangular plates under any combination of the three edge conditions and is used to numerically verify the numbers. In numerical experiments, the number of combinations in the free vibration behaviors is determined for some plate models by using the derived formulas, and are corroborated by counting the numbers of different sets of the natural frequencies that are obtained from the Ritz method.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Fuzhen Pang ◽  
Cong Gao ◽  
Jie Cui ◽  
Yi Ren ◽  
Haichao Li ◽  
...  

This paper describes a unified solution to investigate free vibration solutions of functionally graded (FG) spherical shell with general boundary restraints. The analytical model is established based on the first-order shear deformation theory, and the material varies uniformly along the thickness of FG spherical shell which is divided into several sections along the meridian direction. The displacement functions along circumferential and axial direction are, respectively, composed by Fourier series and Jacobi polynomial regardless of boundary restraints. The boundary restraints of FG spherical shell can be easily simulated according to penalty method of spring stiffness technique, and the vibration solutions are obtained by Rayleigh–Ritz method. To verify the reliability and accuracy of the present solutions, the convergence and numerical verification have been conducted about different boundary parameters, Jacobi parameter, etc. The results obtained by the present method closely agree with those obtained from the published literatures, experiments, and finite element method (FEM). The impacts of geometric dimensions and boundary conditions on the vibration characteristics of FG spherical shell structure are also presented.


2006 ◽  
Vol 33 (3) ◽  
pp. 278-293 ◽  
Author(s):  
Z Canan Girgin ◽  
Konuralp Girgin

A generalized numerical method is proposed to derive the static and dynamic stiffness matrices and to handle the nodal load vector for static analysis of non-uniform Timoshenko beam–columns under several effects. This method presents a unified approach based on effective utilization of the Mohr method and focuses on the following arbitrarily variable characteristics: geometrical properties, bending and shear deformations, transverse and rotatory inertia of mass, distributed and (or) concentrated axial and (or) transverse loads, and Winkler foundation modulus and shear foundation modulus. A successive iterative algorithm is developed to comprise all these characteristics systematically. The algorithm enables a non-uniform Timoshenko beam–column to be regarded as a substructure. This provides an important advantage to incorporate all the variable characteristics based on the substructure. The buckling load and fundamental natural frequency of a substructure subjected to the cited effects are also assessed. Numerical examples confirm the efficiency of the numerical method.Key words: non-uniform, Timoshenko, substructure, elastic foundation, geometrical nonlinearity, stiffness, stability, free vibration.


Sign in / Sign up

Export Citation Format

Share Document