scholarly journals A symplectic method for structure-preserving modelling of damped acoustic waves

Author(s):  
Xiaofan Li ◽  
Mingwen Lu ◽  
Shaolin Liu ◽  
Shizhong Chen ◽  
Huan Zhang ◽  
...  

In this paper, a symplectic method for structure-preserving modelling of the damped acoustic wave equation is introduced. The equation is traditionally solved using non-symplectic schemes. However, these schemes corrupt some intrinsic properties of the equation such as the conservation of both precision and the damping property in long-term calculations. In the method presented, an explicit second-order symplectic scheme is used for the time discretization, whereas physical space is discretized by the discrete singular convolution differentiator. The performance of the proposed scheme has been tested and verified using numerical simulations of the attenuating scalar seismic-wave equation. Scalar seismic wave-field modelling experiments on a heterogeneous medium with both damping and high-parameter contrasts demonstrate the superior performance of the approach presented for suppression of numerical dispersion. Long-term computational experiments display the remarkable capability of the approach presented for long-time simulations of damped acoustic wave equations. Promising numerical results suggest that the approach is suitable for high-precision and long-time numerical simulations of wave equations with damping terms, as it has a structure-preserving property for the damping term.

Author(s):  
Wenjun Cai ◽  
Huai Zhang ◽  
Yushun Wang

We propose a novel stable and efficient dissipation-preserving method for acoustic wave propagations in attenuating media with both correct phase and amplitude. Through introducing the conformal multi-symplectic structure, the intrinsic dissipation law and the conformal symplectic conservation law are revealed for the damped acoustic wave equation. The proposed algorithm is exactly designed to preserve a discrete version of the conformal symplectic conservation law. More specifically, two subsystems in conjunction with the original damped wave equation are derived. One is actually the conservative Hamiltonian wave equation and the other is a dissipative linear ordinary differential equation (ODE) system. Standard symplectic method is devoted to the conservative system, whereas the analytical solution is obtained for the ODE system. An explicit conformal symplectic scheme is constructed by concatenating these two parts of solutions by the Strang splitting technique. Stability analysis and convergence tests are given thereafter. A benchmark model in homogeneous media is presented to demonstrate the effectiveness and advantage of our method in suppressing numerical dispersion and preserving the energy dissipation. Further numerical tests show that our proposed method can efficiently capture the dissipation in heterogeneous media.


ICIPEG 2016 ◽  
2017 ◽  
pp. 499-507
Author(s):  
S. Y. Moussavi Alashloo ◽  
D. Ghosh ◽  
W. I. Wan Yusoff

2019 ◽  
Vol 17 (1) ◽  
pp. 89-103
Author(s):  
Qiaozhen Ma ◽  
Jing Wang ◽  
Tingting Liu

Abstract In this article, we consider the long-time behavior of solutions for the wave equation with nonlinear damping and linear memory. Within the theory of process on time-dependent spaces, we verify the process is asymptotically compact by using the contractive functions method, and then obtain the existence of the time-dependent attractor in $\begin{array}{} H^{1}_0({\it\Omega})\times L^{2}({\it\Omega})\times L^{2}_{\mu}(\mathbb{R}^{+};H^{1}_0({\it\Omega})) \end{array}$.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5901
Author(s):  
Yanfei Wang ◽  
Yaxin Ning ◽  
Yibo Wang

Simulation of the seismic wave propagation in natural gas hydrate (NGH) is of great importance. To finely portray the propagation of seismic wave in NGH, attenuation properties of the earth’s medium which causes reduced amplitude and dispersion need to be considered. The traditional viscoacoustic wave equations described by integer-order derivatives can only nearly describe the seismic attenuation. Differently, the fractional time derivative seismic wave-equation, which was rigorously derived from the Kjartansson’s constant-Q model, could be used to accurately describe the attenuation behavior in realistic media. We propose a new fractional finite-difference method, which is more accurate and faster with the short memory length. Numerical experiments are performed to show the feasibility of the proposed simulation scheme for NGH, which will be useful for next stage of seismic imaging of NGH.


2020 ◽  
Vol 110 (2) ◽  
pp. 754-762 ◽  
Author(s):  
Chuan Li ◽  
Jianxin Liu ◽  
Bo Chen ◽  
Ya Sun

ABSTRACT Seismic wavefield modeling based on the wave equation is widely used in understanding and predicting the dynamic and kinematic characteristics of seismic wave propagation through media. This article presents an optimal numerical solution for the seismic acoustic wave equation in a Hamiltonian system based on the third-order symplectic integrator method. The least absolute truncation error analysis method is used to determine the optimal coefficients. The analysis of the third-order symplectic integrator shows that the proposed scheme exhibits high stability and minimal truncation error. To illustrate the accuracy of the algorithm, we compare the numerical solutions generated by the proposed method with the theoretical analysis solution for 2D and 3D seismic wave propagation tests. The results show that the proposed method reduced the phase error to the eighth-order magnitude accuracy relative to the exact solution. These simulations also demonstrated that the proposed third-order symplectic method can minimize numerical dispersion and preserve the waveforms during the simulation. In addition, comparing different central frequencies of the source and grid spaces (90, 60, and 20 m) for simulation of seismic wave propagation in 2D and 3D models using symplectic and nearly analytic discretization methods, we deduce that the suitable grid spaces are roughly equivalent to between one-fourth and one-fifth of the wavelength, which can provide a good compromise between accuracy and computational cost.


Geophysics ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. T1-T13 ◽  
Author(s):  
Ning Wang ◽  
Tieyuan Zhu ◽  
Hui Zhou ◽  
Hanming Chen ◽  
Xuebin Zhao ◽  
...  

The spatial derivatives in decoupled fractional Laplacian (DFL) viscoacoustic and viscoelastic wave equations are the mixed-domain Laplacian operators. Using the approximation of the mixed-domain operators, the spatial derivatives can be calculated by using the Fourier pseudospectral (PS) method with barely spatial numerical dispersions, whereas the time derivative is often computed with the finite-difference (FD) method in second-order accuracy (referred to as the FD-PS scheme). The time-stepping errors caused by the FD discretization inevitably introduce the accumulative temporal dispersion during the wavefield extrapolation, especially for a long-time simulation. To eliminate the time-stepping errors, here, we adopted the [Formula: see text]-space concept in the numerical discretization of the DFL viscoacoustic wave equation. Different from existing [Formula: see text]-space methods, our [Formula: see text]-space method for DFL viscoacoustic wave equation contains two correction terms, which were designed to compensate for the time-stepping errors in the dispersion-dominated operator and loss-dominated operator, respectively. Using theoretical analyses and numerical experiments, we determine that our [Formula: see text]-space approach is superior to the traditional FD-PS scheme mainly in three aspects. First, our approach can effectively compensate for the time-stepping errors. Second, the stability condition is more relaxed, which makes the selection of sampling intervals more flexible. Finally, the [Formula: see text]-space approach allows us to conduct high-accuracy wavefield extrapolation with larger time steps. These features make our scheme suitable for seismic modeling and imaging problems.


2016 ◽  
Vol 26 (14) ◽  
pp. 2651-2684 ◽  
Author(s):  
Assyr Abdulle ◽  
Timothée Pouchon

A family of effective equations that capture the long time dispersive effects of wave propagation in heterogeneous media in an arbitrary large periodic spatial domain [Formula: see text] is proposed and analyzed. For a wave equation with highly oscillatory periodic spatial tensors of characteristic length [Formula: see text], we prove that the solution of any member of our family of effective equations is [Formula: see text]-close to the true oscillatory wave over a time interval of length [Formula: see text] in a norm equivalent to the [Formula: see text] norm. We show that the previously derived effective equation in [T. Dohnal, A. Lamacz and B. Schweizer, Bloch-wave homogenization on large time scales and dispersive effective wave equations, Multiscale Model. Simulat. 12 (2014) 488–513] belongs to our family of effective equations. Moreover, while Bloch wave techniques were previously used, we show that asymptotic expansion techniques give an alternative way to derive such effective equations. An algorithm to compute the tensors involved in the dispersive equation and allowing for efficient numerical homogenization methods over long time is proposed.


2018 ◽  
Vol 37 (1) ◽  
pp. 69-72 ◽  
Author(s):  
Mathias Louboutin ◽  
Philipp Witte ◽  
Michael Lange ◽  
Navjot Kukreja ◽  
Fabio Luporini ◽  
...  

This is the second part of a three-part tutorial series on full-waveform inversion (FWI) in which we provide a step-by-step walk through of setting up forward and adjoint wave equation solvers and an optimization framework for inversion. In Part 1 ( Louboutin et al., 2017 ), we showed how to use Devito ( http://www.opesci.org/devito-public ) to set up and solve acoustic wave equations with (impulsive) seismic sources and sample wavefields at the receiver locations to forward model shot records. Here in Part 2, we will discuss how to set up and solve adjoint wave equations with Devito and, from that, how we can calculate gradients and function values of the FWI objective function.


Sign in / Sign up

Export Citation Format

Share Document