scholarly journals Unified analytical expressions of the three-dimensional fundamental solutions and their derivatives for linear elastic anisotropic materials

Author(s):  
Longtao Xie ◽  
Chuanzeng Zhang ◽  
Jan Sladek ◽  
Vladimir Sladek

Novel unified analytical displacement and stress fundamental solutions as well as the higher order derivatives of the displacement fundamental solutions for three-dimensional, generally anisotropic and linear elastic materials are presented in this paper. Adequate integral expressions for the displacement and stress fundamental solutions as well as the higher order derivatives of the displacement fundamental solutions are evaluated analytically by using the Cauchy residue theorem. The resulting explicit displacement fundamental solutions and their first and second derivatives are recast into convenient analytical forms which are valid for non-degenerate, partially degenerate, fully degenerate and nearly degenerate cases. The correctness and the accuracy of the novel unified and closed-form three-dimensional anisotropic fundamental solutions are verified by using some available analytical expressions for both transversely isotropic (non-degenerate or partially degenerate) and isotropic (fully degenerate) linear elastic materials.

2017 ◽  
Vol 21 (6) ◽  
pp. 1820-1842
Author(s):  
Wu Zhen ◽  
Ma Rui ◽  
Chen Wanji

This paper will try to overcome two difficulties encountered by the C0 three-node triangular element based on the displacement-based higher-order models. They are (i) transverse shear stresses computed from constitutive equations vanish at the clamped edges, and (ii) it is difficult to accurately produce the transverse shear stresses even using the integration of the three-dimensional equilibrium equation. Invalidation of the equilibrium equation approach ought to attribute to the higher-order derivations of displacement parameters involved in transverse shear stress components after integrating three-dimensional equilibrium equation. Thus, the higher-order derivatives of displacement parameters will be taken out from transverse shear stress field by using the three-field Hu–Washizu variational principle before the finite element procedure is implemented. Therefore, such method is named as the preprocessing method for transverse shear stresses in present work. Because the higher-order derivatives of displacement parameters have been eliminated, a C0 three-node triangular element based on the higher-order zig-zag theory can be presented by using the linear interpolation function. Performance of the proposed element is numerically evaluated by analyzing multilayered sandwich plates with different loading conditions, lamination sequences, material constants and boundary conditions, and it can be found that the present model works well in the finite element framework.


Geophysics ◽  
1979 ◽  
Vol 44 (4) ◽  
pp. 730-741 ◽  
Author(s):  
M. Okabe

Complete analytical expressions for the first and second derivatives of the gravitational potential in arbitrary directions due to a homogeneous polyhedral body composed of polygonal facets are developed, by applying the divergence theorem definitively. Not only finite but also infinite rectangular prisms then are treated. The gravity anomalies due to a uniform polygon are similarly described in two dimensions. The magnetic potential due to a uniformly magnetized body is directly derived from the first derivative of the gravitational potential in a given direction. The rule for translating the second derivative of the gravitational potential into the magnetic field component is also described. The necessary procedures for practical computer programming are discussed in detail, in order to avoid singularities and to save computing time.


2018 ◽  
Vol 28 (12) ◽  
pp. 2367-2401 ◽  
Author(s):  
Barbora Benešová ◽  
Martin Kružík ◽  
Anja Schlömerkemper

We use gradient Young measures generated by Lipschitz maps to define a relaxation of integral functionals which are allowed to attain the value [Formula: see text] and can model ideal locking in elasticity as defined by Prager in 1957. Furthermore, we show the existence of minimizers for variational problems for elastic materials with energy densities that can be expressed in terms of a function being continuous in the deformation gradient and convex in the gradient of the cofactor (and possibly also the gradient of the determinant) of the corresponding deformation gradient. We call the related energy functional gradient polyconvex. Thus, instead of considering second derivatives of the deformation gradient as in second-grade materials, only a weaker higher integrability is imposed. Although the second-order gradient of the deformation is not included in our model, gradient polyconvex functionals allow for an implicit uniform positive lower bound on the determinant of the deformation gradient on the closure of the domain representing the elastic body. Consequently, the material does not allow for extreme local compression.


Author(s):  
V. Mantič ◽  
L. Távara ◽  
J.E. Ortiz ◽  
F. París

<p class="p1">Explicit closed-form real-variable expressions of a fundamental solution and its derivatives for three-dimensional problems in transversely linear elastic isotropic solids are presented. The expressions of the fundamental solution in displacements <span class="s1">U</span><span class="s2">ik </span>and its derivatives, originated by a unit point force, are valid for any combination of material properties and for any orientation of the radius vector between the source and field points. An ex- pression of <span class="s1">U</span><span class="s2">ik </span>in terms of the Stroh eigenvalues on the oblique plane normal to the radius vector is used as starting point. Working from this expression of <span class="s1">U</span><span class="s2">ik</span>, a new approach (based on the application of the rotational symmetry of the material) for deducing the first and second order derivative kernels, <span class="s1">U</span><span class="s2">ik,j </span>and <span class="s1">U</span><span class="s2">ik,jl </span>respectively, has been developed. The expressions of the fundamental solution and its derivatives do not suffer from the difficulties of some previous expressions, obtained by other authors in different ways, with complex valued functions appearing for some combinations of material parameters and/or with division by zero for the radius vector at the rotational symmetry axis. The expressions of <span class="s1">U</span><span class="s2">ik</span>, <span class="s1">U</span><span class="s2">ik,j </span>and <span class="s1">U</span><span class="s2">ik,jl </span>are presented in a form suitable for an efficient computational implementation in BEM codes.</p>


2019 ◽  
Vol 24 (12) ◽  
pp. 3806-3822
Author(s):  
A Amiri-Hezaveh ◽  
P Karimi ◽  
M Ostoja-Starzewski

A stress-based approach to the analysis of linear electro-magneto-elastic materials is proposed. Firstly, field equations for linear electro-magneto-elastic solids are given in detail. Next, as a counterpart of coupled governing equations in terms of the displacement field, generalized stress equations of motion for the analysis of three-dimensional (3D) problems Are obtained – they supply a more convenient basis when mechanical boundary conditions are entirely tractions. Then, a sufficient set of conditions for the corresponding solution of generalized stress equations of motion to be unique are detailed in a uniqueness theorem. A numerical passage to obtain the solution of such equations is then given by generalizing a reciprocity theorem in terms of stress for such materials. Finally, as particular cases of the general 3D form, the stress equations of motion for planar problems (plane strain and Generalized plane stress) for transversely isotropic media are formulated.


This paper is concerned with the study of transient response of a transversely isotropic elastic half-space under internal loadings and displacement discontinuities. Governing equations corresponding to two-dimensional and three-dimensional transient wave propagation problems are solved by using Laplace–Fourier integral transforms and Laplace−Hankel integral transforms, respectively. Explicit general solutions for displacements and stresses are presented. Thereafter boundary-value problems corresponding to internal transient loadings and transient displacement discontinuities are solved for both two-dimensional and three-dimensional problems. Explicit analytical solutions for displacements and stresses corresponding to internal loadings and displacement discontinuities are presented. Solutions corresponding to arbitrary loadings and displacement discontinuities can be obtained through the application of standard analytical procedures such as integration and Fourier expansion to the fundamental solutions presented in this article. It is shown that the transient response of a medium can be accurately computed by using a combination of numerical quadrature and a numerical Laplace inversion technique for the evaluation of integrals appearing in the analytical solutions. Comparisons with existing transient solutions for isotropic materials are presented to confirm the accuracy of the present solutions. Selected numerical results for displacements and stresses due to a buried circular patch load are presented to portray some features of the response of a transversely isotropic elastic half-space. The fundamental solutions presented in this paper can be used in the analysis of a variety of transient problems encountered in disciplines such as seismology, earthquake engineering, etc. In addition these fundamental solutions appear as the kernel functions in the boundary integral equation method and in the displacement discontinuity method.


2013 ◽  
Vol 80 (5) ◽  
Author(s):  
Federico C. Buroni ◽  
Andrés Sáez

Unique, explicit, and exact expressions for the first- and second-order derivatives of the three-dimensional Green's function for general anisotropic materials are presented in this paper. The derived expressions are based on a mixed complex-variable method and are obtained from the solution proposed by Ting and Lee (Ting and Lee, 1997,“The Three-Dimensional Elastostatic Green's Function for General Anisotropic Linear Elastic Solids,” Q. J. Mech. Appl. Math. 50, pp. 407–426) which has three valuable features. First, it is explicit in terms of Stroh's eigenvalues pα (α=1,2,3) on the oblique plane with normal coincident with the position vector; second, it remains well-defined when some Stroh's eigenvalues are equal (mathematical degeneracy) or nearly equal (quasi-mathematical degeneracy); and third, they are exact. Therefore, both new proposed solutions inherit these appealing features, being explicit in terms of Stroh's eigenvalues, simpler, unique, exact and valid independently of the kind of degeneracy involved, as opposed to previous approaches. A study of all possible degenerate cases validate the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document