scholarly journals Water adsorption on bimetallic PtRu/Pt(111) surface alloys

Author(s):  
Julia M. Fischer ◽  
David Mahlberg ◽  
Tanglaw Roman ◽  
Axel Groß

The adsorption of water on bimetallic PtRu/Pt(111) surface alloys has been studied based on periodic density functional theory calculations including dispersion corrections. The Ru atoms of the PtRu surface alloy interact more strongly with water than Pt atoms, as far as both single water molecules and ice-like hexagonal structures are concerned. Within the surface alloy layer, the lateral ligand effect reducing the local reactivity of the surface atoms with increasing Ru content is more dominant than the opposing geometric effect due to the tensile strain. The structural preference for the Ru atoms also prevails at room temperature, as ab initio molecular dynamics simulations show.

2016 ◽  
Vol 18 (3) ◽  
pp. 2164-2174 ◽  
Author(s):  
Davide Presti ◽  
Alfonso Pedone ◽  
Giordano Mancini ◽  
Celia Duce ◽  
Maria Rosaria Tiné ◽  
...  

Density functional theory calculations and classical molecular dynamics simulations have been used to investigate the structure and dynamics of water molecules on kaolinite surfaces and confined in the interlayer of a halloysite model of nanometric dimension.


2018 ◽  
Author(s):  
Kyle Reeves ◽  
Damien Dambournet ◽  
Christel Laberty-Robert ◽  
Rodolphe Vuilleumier ◽  
Mathieu Salanne

Chemical doping and other surface modifications have been used to engineer the bulk properties of materials, but their influence on the surface structure and consequently the surface chemistry are often unknown. Previous work has been successful in fluorinating anatase TiO<sub>2</sub> with charge balance achieved via the introduction of Ti vacancies rather than the reduction of Ti. Our work here investigates the interface between this fluorinated titanate with cationic vacancies and a<br>monolayer of water via density functional theory based molecular dynamics. We compute the projected density of states for only those atoms at the interface and for those states that fall within 1eV of the Fermi energy for various steps throughout the simulation, and we determine that the<br>variation in this representation of the density of states serves as a reasonable tool to anticipate where surfaces are most likely to be reactive. In particular, we conclude that water dissociation at the surface is the main mechanism that influences the anatase (001) surface whereas the change in<br>the density of states at the surface of the fluorinated structure is influenced primarily through the adsorption of water molecules at the surface.


2018 ◽  
Author(s):  
Kyle Reeves ◽  
Damien Dambournet ◽  
Christel Laberty-Robert ◽  
Rodolphe Vuilleumier ◽  
Mathieu Salanne

Chemical doping and other surface modifications have been used to engineer the bulk properties of materials, but their influence on the surface structure and consequently the surface chemistry are often unknown. Previous work has been successful in fluorinating anatase TiO<sub>2</sub> with charge balance achieved via the introduction of Ti vacancies rather than the reduction of Ti. Our work here investigates the interface between this fluorinated titanate with cationic vacancies and a<br>monolayer of water via density functional theory based molecular dynamics. We compute the projected density of states for only those atoms at the interface and for those states that fall within 1eV of the Fermi energy for various steps throughout the simulation, and we determine that the<br>variation in this representation of the density of states serves as a reasonable tool to anticipate where surfaces are most likely to be reactive. In particular, we conclude that water dissociation at the surface is the main mechanism that influences the anatase (001) surface whereas the change in<br>the density of states at the surface of the fluorinated structure is influenced primarily through the adsorption of water molecules at the surface.


Author(s):  
Lijuan Meng ◽  
Jinlian Lu ◽  
Yujie Bai ◽  
Lili Liu ◽  
Tang Jingyi ◽  
...  

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the...


2013 ◽  
Vol 58 (2) ◽  
pp. 321-323 ◽  
Author(s):  
N. Nunomura ◽  
S. Sunada

In order to understand the first steps of the aqueous corrosion of iron, we have performed density functional theory (DFT) based calculations for water molecules and pre-covered oxygen on iron surface. The surface structure is modeled by iron atomic layer and vacuum region, and then oxygen atom and water molecules are displaced on the surface. Self consistent DFT calculations were performed using a numerical atomic orbital basis set and a norm-conserve pseudopotential method. According to our calculations, with increasing surface oxygen coverage, the iron surface is found to be not activated, which leads to a feeble adsorption of water molecules on iron surface. Our results show that the surface covered oxygen exerts an influence on the adsorption of water molecules on iron surface.


2005 ◽  
Vol 862 ◽  
Author(s):  
Mayur S. Valipa ◽  
Tamas Bakos ◽  
Eray S. Aydil ◽  
Dimitrios Maroudas

AbstractDevice-quality hydrogenated amorphous silicon (a-Si:H) thin films grown under conditions where the SiH3 radical is the dominant deposition precursor are remarkably smooth, as the SiH3 radical is very mobile and fills surface valleys during its diffusion on the a-Si:H surface. In this paper, we analyze atomic-scale mechanisms of SiH3 diffusion on a-Si:H surfaces based on molecular-dynamics simulations of SiH3 radical impingement on surfaces of a-Si:H films. The computed average activation barrier for radical diffusion on a-Si:H is 0.16 eV. This low barrier is due to the weak adsorption of the radical onto the a-Si:H surface and its migration predominantly through overcoordination defects; this is consistent with our density functional theory calculations on crystalline Si surfaces. The diffusing SiH3 radical incorporates preferentially into valleys on the a-Si:H surface when it transfers an H atom and forms a Si-Si backbond, even in the absence of dangling bonds.


Minerals ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 205 ◽  
Author(s):  
Ragnhild Hånde ◽  
Vivien Ramothe ◽  
Stéphane Tesson ◽  
Baptiste Dazas ◽  
Eric Ferrage ◽  
...  

Following our previous works on dioctahedral clays, we extend the classical Polarizable Ion Model (PIM) to trioctahedral clays, by considering dry Na-, Cs-, Ca- and Sr-hectorites as well as hydrated Na-hectorite. The parameters of the force field are determined by optimizing the atomic forces and dipoles on density functional theory calculations. The simulation results are validated by comparison with experimental X-ray diffraction (XRD) data. The XRD patterns calculated from classical molecular dynamics simulations performed with the PIM force field are in very good agreement with experimental results. In the bihydrated state, the less structured electronic density profile obtained with PIM compared to the one from the state-of-the-art non-polarizable force field clayFF explains the slightly better agreement between the PIM results and experiments.


2020 ◽  
Vol 22 (35) ◽  
pp. 19940-19947
Author(s):  
Roberto Cota ◽  
Ambuj Tiwari ◽  
Bernd Ensing ◽  
Huib J. Bakker ◽  
Sander Woutersen

We investigate the orientational dynamics of water molecules solvating phenolate ions using ultrafast vibrational spectroscopy and density functional theory-based molecular dynamics simulations.


Sign in / Sign up

Export Citation Format

Share Document