scholarly journals An asymptotic higher-order theory for rectangular beams

Author(s):  
E. Nolde ◽  
A. V. Pichugin ◽  
J. Kaplunov

A direct asymptotic integration of the full three-dimensional problem of elasticity is employed to derive a consistent governing equation for a beam with the rectangular cross section. The governing equation is consistent in the sense that it has the same long-wave low-frequency behaviour as the exact solution of the original three-dimensional problem. Performance of the new beam equation is illustrated by comparing its predictions against the results of direct finite-element computations. Limiting behaviours for beams with large (and small) aspect ratios, which can be established using classical plate theories, are recovered from the new governing equation to illustrate its consistency and also to illustrate the importance of using plate theories with the correctly refined boundary conditions. The implications for the correct choice of the shear correction factor in Timoshenko's beam theory are also discussed.

2005 ◽  
Vol 127 (3) ◽  
pp. 352-356 ◽  
Author(s):  
Michael W. Egner ◽  
Louis C. Burmeister

Laminar flow and heat transfer in three-dimensional spiral ducts of rectangular cross section with aspect ratios of 1, 4, and 8 were determined by making use of the FLUENT computational fluid dynamics program. The peripherally averaged Nusselt number is presented as a function of distance from the inlet and of the Dean number. Fully developed values of the Nusselt number for a constant-radius-of-curvature duct, either toroidal or helical with small pitch, can be used to predict those quantities for the spiral duct in postentry regions. These results are applicable to spiral-plate heat exchangers.


2008 ◽  
Vol 599 ◽  
pp. 309-339 ◽  
Author(s):  
GUILLAUME A. BRÈS ◽  
TIM COLONIUS

Direct numerical simulations are performed to investigate the three-dimensional stability of compressible flow over open cavities. A linear stability analysis is conducted to search for three-dimensional global instabilities of the two-dimensional mean flow for cavities that are homogeneous in the spanwise direction. The presence of such instabilities is reported for a range of flow conditions and cavity aspect ratios. For cavities of aspect ratio (length to depth) of 2 and 4, the three-dimensional mode has a spanwise wavelength of approximately one cavity depth and oscillates with a frequency about one order of magnitude lower than two-dimensional Rossiter (flow/acoustics) instabilities. A steady mode of smaller spanwise wavelength is also identified for square cavities. The linear results indicate that the instability is hydrodynamic (rather than acoustic) in nature and arises from a generic centrifugal instability mechanism associated with the mean recirculating vortical flow in the downstream part of the cavity. These three-dimensional instabilities are related to centrifugal instabilities previously reported in flows over backward-facing steps, lid-driven cavity flows and Couette flows. Results from three-dimensional simulations of the nonlinear compressible Navier–Stokes equations are also reported. The formation of oscillating (and, in some cases, steady) spanwise structures is observed inside the cavity. The spanwise wavelength and oscillation frequency of these structures agree with the linear analysis predictions. When present, the shear-layer (Rossiter) oscillations experience a low-frequency modulation that arises from nonlinear interactions with the three-dimensional mode. The results are consistent with observations of low-frequency modulations and spanwise structures in previous experimental and numerical studies on open cavity flows.


2000 ◽  
Vol 123 (2) ◽  
pp. 211-218 ◽  
Author(s):  
Tong-Miin Liou ◽  
Hsin-Li Lee ◽  
Chin-Chun Liao

Three-dimensional flowfields in a 60-deg curved combustor inlet duct of rectangular cross-section with and without guide vanes were measured using Laser-Doppler velocimetry for the longitudinal, radial, and spanwise velocity components. The Reynolds number based on the bulk mean velocity and hydraulic diameter was 2.53×104. The main parameters examined were the guide-vane number and Reynolds number. The results show that to completely eliminate flow separation in the curved combustor inlet three guide vanes should be installed. The critical Reynolds number for the absence of the flow separation is found to decrease with increasing product of radius and aspect ratios. In addition, it is found that in most regions the maximum radial mean velocity, difference between radial and spanwise normal stress, and the turbulent kinetic energy decrease with increasing guide-vane number. A rationale for the absence of flow separation in the one-vane case predicted by previous researchers is also provided.


Author(s):  
Rameshchandra P Shimpi ◽  
Rajesh A Shetty ◽  
Anirban Guha

This paper proposes a simple single variable shear deformation theory for an isotropic beam of rectangular cross-section. The theory involves only one fourth-order governing differential equation. For beam bending problems, the governing equation and the expressions for the bending moment and shear force of the theory are strikingly similar to those of Euler–Bernoulli beam theory. For vibration and buckling problems, the Euler–Bernoulli beam theory governing equation comes out as a special case when terms pertaining to the effects of shear deformation are ignored from the governing equation of present theory. The chosen displacement functions of the theory give rise to a realistic parabolic distribution of transverse shear stress across the beam cross-section. The theory does not require a shear correction factor. Efficacy of the proposed theory is demonstrated through illustrative examples for bending, free vibrations and buckling of isotropic beams of rectangular cross-section. The numerical results obtained are compared with those of exact theory (two-dimensional theory of elasticity) and other first-order and higher-order shear deformation beam theory results. The results obtained are found to be accurate.


Author(s):  
Michael W. Egner ◽  
Louis C. Burmeister

Laminar flow and heat transfer in three-dimensional spiral ducts of rectangular cross section with aspect ratios of 1, 4, and 8 were determined with the aide of the FLUENT computational fluid dynamics program. Peripherally-averaged coefficients of friction and Nusselt numbers are presented as a function of distance from the inlet and of the Dean number. Fully-developed values of friction coefficient and Nusselt number for a constant-radius-of-curvature duct, either toroidal or helical with small pitch, can be used to predict those quantities for the spiral duct in post-entry regions. These results are applicable to spiral-plate heat exchangers.


2020 ◽  
pp. 107754632095652 ◽  
Author(s):  
Ahmed E Abouelregal

In the current investigation, the thermoelastic vibration of a viscoelastic microbeam resting on the Winkler foundation is studied using the fractional-order theory. To describe the damping of the viscoelastic material according to experimental results, the Kelvin–Voigt model is replaced by a new form with a fractional-order derivative. The generalized thermoelasticity model and Euler–Bernoulli beam theory are used to construct the governing equation. The microbeam is subjected to axial load, ultrafast laser heating, and varying sinusoidal heat. The governing equation is then solved using the Laplace transform technique to determine the deflection and thermoelastic interaction responses of microbeams. The effects of many parameters such as the coefficient of viscosity, axial load, fractional derivative order, laser pulse duration, and foundation parameter on the microbeam response are explained and discussed in detail.


2017 ◽  
Vol 23 (5) ◽  
pp. 775-786 ◽  
Author(s):  
Erick Pruchnicki

This paper presents a general elastic beam theory, which is consistent with the principle of stationary three-dimensional potential energy. For the sake of simplicity we consider the case of a rectangular cross section. The series expansion of the displacement field up to fourth-order in h (dimension of the cross section) is defined by 45 unknowns. The first variation of the potential energy must be zero but we only impose that each term guarantees an [Formula: see text]error. By adding supplementary lateral boundary conditions and on two extremities end cross section of the beam, we finally arrive at a well posed system of unidimensional differential equations. A linear algebraic dependence with respect to 16 displacement fields allows us to reduce the unknown to 19 displacement fields. To our knowledge this work is the first contribution to this end when the beam problem is completely three-dimensional.


2019 ◽  
Vol 968 ◽  
pp. 496-510
Author(s):  
Anatoly Grigorievich Zelensky

Classical and non-classical refined theories of plates and shells, based on various hypotheses [1-7], for a wide class of boundary problems, can not describe with sufficient accuracy the SSS of plates and shells. These are boundary problems in which the plates and shells undergo local and burst loads, have openings, sharp changes in mechanical and geometric parameters (MGP). The problem also applies to such elements of constructions that have a considerable thickness or large gradient of SSS variations. The above theories in such cases yield results that can differ significantly from those obtained in a three-dimensional formulation. According to the logic in such theories, the accuracy of solving boundary problems is limited by accepted hypotheses and it is impossible to improve the accuracy in principle. SSS components are usually depicted in the form of a small number of members. The systems of differential equations (DE) obtained here have basically a low order. On the other hand, the solution of boundary value problems for non-thin elastic plates and shells in a three-dimensional formulation [8] is associated with great mathematical difficulties. Only in limited cases, the three-dimensional problem of the theory of elasticity for plates and shells provides an opportunity to find an analytical solution. The complexity of the solution in the exact three-dimensional formulation is greatly enhanced if complex boundary conditions or physically nonlinear problems are considered. Theories in which hypotheses are not used, and SSS components are depicted in the form of infinite series in transverse coordinates, will be called mathematical. The approximation of the SSS component can be adopted in the form of various lines [9-16], and the construction of a three-dimensional problem to two-dimensional can be accomplished by various methods: projective [9, 14, 16], variational [12, 13, 15, 17]. The effectiveness and accuracy of one or another variant of mathematical theory (MT) depends on the complex methodology for obtaining the basic equations.


2018 ◽  
Vol 10 (05) ◽  
pp. 1850058 ◽  
Author(s):  
Dong Zhao ◽  
Ying Liu

This paper addresses the transverse vibration of a nematic elastomer (NE) beam embedded in soft viscoelastic surroundings with the aim to clarify a new dissipation mechanism caused by dynamic soft elasticity of this soft material. Based on the viscoelasticity theory of NEs in low-frequency limit and the Timoshenko beam theory, the governing equation of motion is derived by using the Hamilton principle and energy method, and is solved by the complex modal analysis method. The dependence of vibration property on the intrinsic parameters of NEs (director rotation time, rubber relaxation time, anisotropic parameter) and foundation (spring, shear and damping constants) are discussed in detail. The results show that dynamic soft elasticity leads to anomalous anisotropy of energy transfer and attenuation. The relative stiffer foundation would restraint the rubber dissipation of viscoelastic beams, but has less influence on the director rotation dissipation, which is particular for NE beams. This study would provide a useful guidance in the dynamic design of NE apparatus embedded in soft viscous media.


Sign in / Sign up

Export Citation Format

Share Document