Effects of Guide-Vane Number in a Three-Dimensional 60-Deg Curved Side-Dump Combustor Inlet

2000 ◽  
Vol 123 (2) ◽  
pp. 211-218 ◽  
Author(s):  
Tong-Miin Liou ◽  
Hsin-Li Lee ◽  
Chin-Chun Liao

Three-dimensional flowfields in a 60-deg curved combustor inlet duct of rectangular cross-section with and without guide vanes were measured using Laser-Doppler velocimetry for the longitudinal, radial, and spanwise velocity components. The Reynolds number based on the bulk mean velocity and hydraulic diameter was 2.53×104. The main parameters examined were the guide-vane number and Reynolds number. The results show that to completely eliminate flow separation in the curved combustor inlet three guide vanes should be installed. The critical Reynolds number for the absence of the flow separation is found to decrease with increasing product of radius and aspect ratios. In addition, it is found that in most regions the maximum radial mean velocity, difference between radial and spanwise normal stress, and the turbulent kinetic energy decrease with increasing guide-vane number. A rationale for the absence of flow separation in the one-vane case predicted by previous researchers is also provided.

Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 172
Author(s):  
Hengtao Shi

Recently, a new type of low-loss variable inlet guide vane (VIGV) was proposed for improving a compressor’s performance under off-design conditions. To provide more information for applications, this work investigated the effect of the Reynolds number and clearance flow on the aerodynamic characteristics of this new type of VIGV. The performance and flow field of two representative airfoils with different chord Reynolds numbers were studied with the widely used commercial software ANSYS CFX after validation was completed. Calculations indicate that, with the decrease in the Reynolds number Rec, the airfoil loss coefficient ω and deviation δ first increase slightly and then entered a high growth rate in a low range of Rec. Afterwards, a detailed boundary-layer analysis was conducted to reveal the flow mechanism for the airfoil performance degradation with a low Reynolds number. For the design point, it is the appearance and extension of the separation region on the rear portion; for the maximum incidence point, it is the increase in the length and height of the separation region on the former portion. The three-dimensional VIGV research confirms the Reynolds number effect on airfoils. Furthermore, the clearance leakage flow forms a strong stream-wise vortex by injection into the mainflow, resulting in a high total-pressure loss and under-turning in the endwall region, which shows the potential benefits of seal treatment.


Author(s):  
Zhenping Liu ◽  
James C. Hill ◽  
Rodney O. Fox ◽  
Michael G. Olsen

Flash Nanoprecipitation (FNP) is a technique to produce monodisperse functional nanoparticles through rapidly mixing a saturated solution and a non-solvent. Multi-inlet vortex reactors (MIVR) have been effectively applied to FNP due to their ability to provide both rapid mixing and the flexibility of inlet flow conditions. Until recently, only micro-scale MIVRs have been demonstrated to be effective in FNP. A scaled-up MIVR could potentially generate large quantities of functional nanoparticles, giving FNP wider applicability in the industry. In the present research, turbulent mixing inside a scaled-up, macro-scale MIVR was measured by stereoscopic particle image velocimetry (SPIV). Reynolds number of this reactor is defined based on the bulk inlet velocity, ranging from 3290 to 8225. It is the first time that the three-dimensional velocity field of a MIVR was experimentally measured. The influence of Reynolds number on mean velocity becomes more linear as Reynolds number increases. An analytical vortex model was proposed to well describe the mean velocity profile. The turbulent characteristics such as turbulent kinematic energy and Reynolds stress are also presented. The wandering motion of vortex center was found to have a significant contribution to the turbulent kinetic energy of flow near the center area.


Author(s):  
Lingyu Li ◽  
Yuan Zheng ◽  
Daqing Zhou ◽  
Zihao Mi

The head of low-head hydropower stations is generally higher than 2.5m in the world, while micro-head hydropower resources which head is less than 2.5m are also very rich. In the paper, three-dimensional CFD method has been used to simulate flow passage of the micro-head bulb turbine. The design head and unit flow of the turbine was 1m and 3m3/s respectively. With the numerical simulation, the bulb turbine is researched by analyzing external characteristics of the bulb turbine, flow distribution before the runner, pressure distribution of the runner blade surface, and flow distribution of the outlet conduit under three different schemes. The turbine in second scheme was test by manufactured into a physical model. According to the results of numerical simulation and model test, bulb turbine with no guide vane in second scheme has simpler structure, lower cost, and better flow capacity than first scheme, which has traditional multi-guide vanes. Meanwhile, efficiency of second scheme has just little decrease. The results of three dimensions CFD simulation and test results agree well in second scheme, and higher efficiency is up to 77% which has a wider area with the head of 1m. The curved supports in third scheme are combined guide vanes to the fixed supports based on 2nd scheme. By the water circulations flowing along the curved supports which improve energy transformation ability of the runner, the efficiency of the turbine in third scheme is up to 82.6%. Third scheme, which has simpler structure and best performance, is appropriate for the development and utilization of micro-head hydropower resources in plains and oceans.


Author(s):  
Ayako Ono ◽  
Masaaki Tanaka ◽  
Jun Kobayashi ◽  
Hideki Kamide

In design of the Japan Sodium-cooled Fast Reactor (JSFR), mean velocity of the coolant is approximately 9 m/s in the primary hot leg (H/L) piping which diameter is 1.27 m. The Reynolds number in the H/L piping reaches 4.2×107. Moreover, a short-elbow which has Rc/D = 1.0 (Rc: Curvature radius, D: Pipe diameter) is used in the hot leg piping in order to achieve compact plant layout and reduce plant construction cost. In the H/L piping, flow-induced vibration (FIV) is concerned due to excitation force which is caused by pressure fluctuation on the wall closely related with the velocity fluctuation in the short-elbow. In the previous study, relation between the flow separation and the pressure fluctuations in the short-elbow was revealed under the specific inlet condition with flat distribution of time-averaged axial velocity and relatively weak velocity fluctuation intensity in the pipe. However, the inlet velocity condition of the H/L in a reactor may have ununiformed profile with highly turbulent due to the complex geometry in reactor vessel (R/V). In this study, the influence of the inlet velocity condition on unsteady characteristics of velocity in the short-elbow was studied. Although the flow around the inlet of the H/L in R/V could not simulate completely, inlet velocity conditions were controlled by installing the perforated plate with plugging the flow-holes appropriately. Then expected flow patterns were made at 2D upstream position from the elbow inlet in the experiments. It was revealed that the inlet velocity profiles affected circumferential secondary flow and the secondary flows affected an area of flow separation at the elbow, by local velocity measurement by the PIV (particle image velocimetry). And it was found that the low frequent turbulence in the upstream piping remained downstream of the elbow though their intensity was attenuated.


2005 ◽  
Vol 127 (3) ◽  
pp. 352-356 ◽  
Author(s):  
Michael W. Egner ◽  
Louis C. Burmeister

Laminar flow and heat transfer in three-dimensional spiral ducts of rectangular cross section with aspect ratios of 1, 4, and 8 were determined by making use of the FLUENT computational fluid dynamics program. The peripherally averaged Nusselt number is presented as a function of distance from the inlet and of the Dean number. Fully developed values of the Nusselt number for a constant-radius-of-curvature duct, either toroidal or helical with small pitch, can be used to predict those quantities for the spiral duct in postentry regions. These results are applicable to spiral-plate heat exchangers.


2000 ◽  
Author(s):  
Bok-Cheol Sim ◽  
Abdelfattah Zebib

Abstract Three-dimensional, time-dependent thermocapillary convection in open cylindrical containers is investigated numerically. Results for aspect ratios (Ar) of 1, 2.5, 8, and 16 and a Prandtl number of 6.84 are obtained to compare the results of numerical simulations with ongoing experiments. Convection is steady and axisymmetric at sufficiently low values of the Reynolds number (Re). Transition to oscillatory states occurs at critical values of Re which depend on Ar. With Ar = 1.0 and 2.5, we observe, respectively, 5 and 9 azimuthal wavetrains travelling clockwise at the free surface near the critical Re. With Ar = 8.0 and 16.0, there are substantially more, but pulsating waves near the critical Re. In the case of Ar = 16.0, which approaches the conditions in an infinite layer, our results are in good agreement with linear theory. While the critical Reynolds number decreases with increasing aspect ratio in the case of azimuthal rotating waves, it increases with increasing aspect ratio in the case of azimuthal pulsating waves. The critical frequency of temperature oscillations is found to decrease linearly with increasing Ar. We have also computed supercritical time-dependent states and find that while the frequency increases with increasing Re near the critical region, the frequency of supercritical convection decreases with Re.


Author(s):  
E. Nolde ◽  
A. V. Pichugin ◽  
J. Kaplunov

A direct asymptotic integration of the full three-dimensional problem of elasticity is employed to derive a consistent governing equation for a beam with the rectangular cross section. The governing equation is consistent in the sense that it has the same long-wave low-frequency behaviour as the exact solution of the original three-dimensional problem. Performance of the new beam equation is illustrated by comparing its predictions against the results of direct finite-element computations. Limiting behaviours for beams with large (and small) aspect ratios, which can be established using classical plate theories, are recovered from the new governing equation to illustrate its consistency and also to illustrate the importance of using plate theories with the correctly refined boundary conditions. The implications for the correct choice of the shear correction factor in Timoshenko's beam theory are also discussed.


2006 ◽  
Vol 129 (6) ◽  
pp. 685-696 ◽  
Author(s):  
Guoguang Su ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Computations with multi-block chimera grids were performed to study the three-dimensional turbulent flow and heat transfer in a rotating rectangular channel with staggered arrays of pin-fins. The channel aspect ratio (AR) is 4:1, the pin length to diameter ratio (H∕D) is 2.0, and the pin spacing to diameter ratio is 2.0 in both the stream-wise (S1∕D) and span-wise (S2∕D) directions. A total of six calculations have been performed with various combinations of rotation number, Reynolds number, and coolant-to-wall density ratio. The rotation number and inlet coolant-to-wall density ratio varied from 0.0 to 0.28 and from 0.122 to 0.20, respectively, while the Reynolds number varied from 10,000 to 100,000. For the rotating cases, the rectangular channel was oriented at 150deg with respect to the plane of rotation to be consistent with the configuration of the gas turbine blade. A Reynolds-averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure for detailed predictions of mean velocity, mean temperature, and heat transfer coefficient distributions.


1980 ◽  
Vol 98 (1) ◽  
pp. 149-159 ◽  
Author(s):  
L. HÅKan Gustavsson ◽  
Lennart S. Hultgren

The temporal evolution of small three-dimensional disturbances on viscous flows between parallel walls is studied. The initial-value problem is formally solved by using Fourier–Laplace transform techniques. The streamwise velocity component is obtained as the solution of a forced problem. As a consequence of the three-dimensionality, a resonant response is possible, leading to algebraic growth for small times. It occurs when the eigenvalues of the Orr–Sommerfeld equation coincide with the eigenvalues of the homogeneous operator for the streamwise velocity component. The resonance has been investigated numerically for plane Couette flow. The phase speed of the resonant waves equals the average mean velocity. The wavenumber combination that leads to the largest amplitude corresponds to structures highly elongated in the streamwise direction. The maximum amplitude, and the time to reach this maximum, scale with the Reynolds number. The aspect ratio of the most rapidly growing wave increases with the Reynolds number, with its spanwise wavelength approaching a constant value of about 3 channel heights.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1555
Author(s):  
Juan Pablo Hurtado ◽  
Bryan Villegas ◽  
Sebastián Pérez ◽  
Enrique Acuña

The connection between an intake fan and a ventilation shaft must be designed in such a way that it minimizes the energy waste due to singularity losses. As a result, the questions of which radius of curvature to use and if guide vanes have to be included need to be answered. In that case, the variables such as the number, upstream and downstream penetration length, radius of curvature, and width of the vanes, need to be defined. Although this work is oriented to mine ventilation, these questions are usually valid in other engineering applications as well. The objective of this study is to define the previously mentioned variables to determine the optimal design combination for the radius/diameter relationship (r/D). Computational fluid dynamics was used to determine the shock loss factor of seven elbow curvature ratios for a 3 m diameter duct and fan, with and without guide vanes to estimate the best performing configuration and, therefore, to maximize the fan airflow volume. The methodology used consisted of initially developing models in 2D geometries, to optimize the meshing and the CPU use, and studying separately the number of vanes, upstream and downstream penetration, radius of curvature, and width of the vanes for each curvature ratio (r/D). Then, the best-performing variable combinations for each curvature ratio were selected to be simulated and studied with the 3D geometries. The application of the guide vane designs for three-dimensional simulated geometries is presented, first without and then with guide vanes, including the shock loss factors obtained. The methodology and obtained results allowed quantifying the energy savings and to reduce the CFD simulations steps required to optimize the design of the elbow and guide vanes. The results obtained cannot be used with elbows in exhaust fans, because fluid dynamics phenomena are different.


Sign in / Sign up

Export Citation Format

Share Document