scholarly journals On fibre dispersion modelling of soft biological tissues: a review

Author(s):  
Gerhard A. Holzapfel ◽  
Ray W. Ogden ◽  
Selda Sherifova

Collagen fibres within fibrous soft biological tissues such as artery walls, cartilage, myocardiums, corneas and heart valves are responsible for their anisotropic mechanical behaviour. It has recently been recognized that the dispersed orientation of these fibres has a significant effect on the mechanical response of the tissues. Modelling of the dispersed structure is important for the prediction of the stress and deformation characteristics in (patho)physiological tissues under various loading conditions. This paper provides a timely and critical review of the continuum modelling of fibre dispersion, specifically, the angular integration and the generalized structure tensor models. The models are used in representative numerical examples to fit sets of experimental data that have been obtained from mechanical tests and fibre structural information from second-harmonic imaging. In particular, patches of healthy and diseased aortic tissues are investigated, and it is shown that the predictions of the models fit very well with the data. It is straightforward to use the models described herein within a finite-element framework, which will enable more realistic (and clinically relevant) boundary-value problems to be solved. This also provides a basis for further developments of material models and points to the need for additional mechanical and microstructural data that can inform further advances in the material modelling.

Author(s):  
Arturo N. Natali ◽  
Emanuele L. Carniel ◽  
Piero G. Pavan ◽  
Alessio Gasparetto ◽  
Franz G. Sander ◽  
...  

Soft biological tissues show a strongly non linear and time-dependent mechanical response and undergo large strains under physiological loads. The microstructural arrangement determines specific anisotropic macroscopic properties that must be considered within a constitutive formulation. The characterization of the mechanical behaviour of soft tissues entails the definition of constitutive models capable of accounting for geometric and material non linearity. In the model presented here a hyperelastic anisotropic formulation is adopted as the basis for the development of constitutive models for soft tissues and can be properly arranged for the investigation of viscous and damage phenomena as well to interpret significant aspects pertaining to ordinary and degenerative conditions. Visco-hyperelastic models are used to analyze the time-dependent mechanical response, while elasto-damage models account for the stiffness and strength decrease that can develop under significant loading or degenerative conditions. Experimental testing points out that damage response is affected by the strain rate associated with loading, showing a decrease in the damage limits as the strain rate increases. This phenomena can be investigated by means of a model capable of accounting for damage phenomena in relation to viscous effects. The visco-hyperelastic damage model developed is defined on the basis of a Helmholtz free energy function depending on the strain-damage history. In particular, a specific damage criterion is formulated in order to evaluate the influence of the strain rate on damage. The model can be implemented in a general purpose finite element code. This makes it possible to perform numerical analyses of the mechanical response considering time-dependent effects and damage phenomena. The experimental tests develop investigated tissue response for different strain rate conditions, accounting for stretch situations capable of inducing damage phenomena. The reliability of the formulation is evaluated by a comparison with the results of experimental tests performed on pig periodontal ligament.


2021 ◽  
Vol 18 (182) ◽  
pp. 20210411
Author(s):  
Gerhard A. Holzapfel ◽  
Kevin Linka ◽  
Selda Sherifova ◽  
Christian J. Cyron

The constitutive modelling of soft biological tissues has rapidly gained attention over the last 20 years. Current constitutive models can describe the mechanical properties of arterial tissue. Predicting these properties from microstructural information, however, remains an elusive goal. To address this challenge, we are introducing a novel hybrid modelling framework that combines advanced theoretical concepts with deep learning. It uses data from mechanical tests, histological analysis and images from second-harmonic generation. In this first proof of concept study, our hybrid modelling framework is trained with data from 27 tissue samples only. Even such a small amount of data is sufficient to be able to predict the stress–stretch curves of tissue samples with a median coefficient of determination of R 2 = 0.97 from microstructural information, as long as one limits the scope to tissue samples whose mechanical properties remain in the range commonly encountered. This finding suggests that deep learning could have a transformative impact on the way we model the constitutive properties of soft biological tissues.


2013 ◽  
Vol 10 (80) ◽  
pp. 20120760 ◽  
Author(s):  
Andreas J. Schriefl ◽  
Heimo Wolinski ◽  
Peter Regitnig ◽  
Sepp D. Kohlwein ◽  
Gerhard A. Holzapfel

We present a novel approach allowing for a simple, fast and automated morphological analysis of three-dimensional image stacks ( z -stacks) featuring fibrillar structures from optically cleared soft biological tissues. Five non-atherosclerotic tissue samples from human abdominal aortas were used to outline the multi-purpose methodology, applicable to various tissue types. It yields a three-dimensional orientational distribution of relative amplitudes, representing the original collagen fibre morphology, identifies regions of isotropy where no preferred fibre orientations are observed and determines structural parameters throughout anisotropic regions for the analysis and numerical modelling of biomechanical quantities such as stress and strain. Our method combines optical tissue clearing with second-harmonic generation imaging, Fourier-based image analysis and maximum-likelihood estimation for distribution fitting. With a new sample preparation method for arteries, we present, for the first time to our knowledge, a continuous three-dimensional distribution of collagen fibres throughout the entire thickness of the aortic wall, revealing novel structural and organizational insights into the three arterial layers.


2020 ◽  
Vol 7 (2) ◽  
pp. 48
Author(s):  
Emanuele Luigi Carniel ◽  
Ilaria Toniolo ◽  
Chiara Giulia Fontanella

Biomechanical investigations of surgical procedures and devices are usually developed by means of human or animal models. The exploitation of computational methods and tools can reduce, refine, and replace (3R) the animal experimentations for scientific purposes and for pre-clinical research. The computational model of a biological structure characterizes both its geometrical conformation and the mechanical behavior of its building tissues. Model development requires coupled experimental and computational activities. Medical images and anthropometric information provide the geometrical definition of the computational model. Histological investigations and mechanical tests on tissue samples allow for characterizing biological tissues’ mechanical response by means of constitutive models. The assessment of computational model reliability requires comparing model results and data from further experimentations. Computational methods allow for the in-silico analysis of surgical procedures and devices’ functionality considering many different influencing variables, the experimental investigation of which should be extremely expensive and time consuming. Furthermore, computational methods provide information that experimental methods barely supply, as the strain and the stress fields that regulate important mechano-biological phenomena. In this work, general notes about the development of biomechanical tools are proposed, together with specific applications to different fields, as dental implantology and bariatric surgery.


2015 ◽  
Vol 76 (7) ◽  
Author(s):  
Farshid Fathi ◽  
Shahrokh Shahi ◽  
Soheil Mohammadi

Extensive research has been performed in the past decades to study the behavior of soft biological tissues in order to reduce the need for practical experiments. The applicability of these researches, particularly for skin, ligament, muscles and the heart, brings up its importance in various biological science and technology disciplines such as surgery and medicine. Softness and large deformation govern the behavior of soft materials and prohibit the use of small strains solutions in finite element method.In this work, the focus is set on a strain energy function which has the advantage of accurately representing the behavior of a variety of soft tissues with only a few parameters in a finite element approach. The numerical results are verified with a set of tensile experiments to demonstrate the performance of the proposed model. The parameters include the matrix and collagen bundles and their orientation. Different cases are analyzed and discussed for better prediction of different soft tissue responses.  


BME Frontiers ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Darian S. James ◽  
Paul J. Campagnola

Second harmonic generation (SHG) and third harmonic generation (THG) microscopies have emerged as powerful imaging modalities to examine structural properties of a wide range of biological tissues. Although SHG and THG arise from very different contrast mechanisms, the two are complimentary and can often be collected simultaneously using a modified multiphoton microscope. In this review, we discuss the needed instrumentation for these modalities as well as the underlying theoretical principles of SHG and THG in tissue and describe how these can be leveraged to extract unique structural information. We provide an overview of recent advances showing how SHG microscopy has been used to evaluate collagen alterations in the extracellular matrix and how this has been used to advance our knowledge of cancers, fibroses, and the cornea, as well as in tissue engineering applications. Specific examples using polarization-resolved approaches and machine learning algorithms are highlighted. Similarly, we review how THG has enabled developmental biology and skin cancer studies due to its sensitivity to changes in refractive index, which are ubiquitous in all cell and tissue assemblies. Lastly, we offer perspectives and outlooks on future directions of SHG and THG microscopies and present unresolved questions, especially in terms of overall miniaturization and the development of microendoscopy instrumentation.


Author(s):  
Bruno Schueler ◽  
Robert W. Odom

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides unique capabilities for elemental and molecular compositional analysis of a wide variety of surfaces. This relatively new technique is finding increasing applications in analyses concerned with determining the chemical composition of various polymer surfaces, identifying the composition of organic and inorganic residues on surfaces and the localization of molecular or structurally significant secondary ions signals from biological tissues. TOF-SIMS analyses are typically performed under low primary ion dose (static SIMS) conditions and hence the secondary ions formed often contain significant structural information.This paper will present an overview of current TOF-SIMS instrumentation with particular emphasis on the stigmatic imaging ion microscope developed in the authors’ laboratory. This discussion will be followed by a presentation of several useful applications of the technique for the characterization of polymer surfaces and biological tissues specimens. Particular attention in these applications will focus on how the analytical problem impacts the performance requirements of the mass spectrometer and vice-versa.


2021 ◽  
Vol 11 (3) ◽  
pp. 1002
Author(s):  
Xue Wang ◽  
Xinchao Lu ◽  
Chengjun Huang

By eliminating the photodamage and photobleaching induced by high intensity laser and fluorescent molecular, the label-free laser scanning microscopy shows powerful capability for imaging and dynamic tracing to biological tissues and cells. In this review, three types of label-free laser scanning microscopies: laser scanning coherent Raman scattering microscopy, second harmonic generation microscopy and scanning localized surface plasmon microscopy are discussed with their fundamentals, features and recent progress. The applications of label-free biological imaging of these laser scanning microscopies are also introduced. Finally, the performance of the microscopies is compared and the limitation and perspectives are summarized.


1992 ◽  
Vol 25 (7) ◽  
pp. 814
Author(s):  
Vladimir V. Shorokhov ◽  
Vadim N. Voronkov ◽  
Alexander N. Klishko

Sign in / Sign up

Export Citation Format

Share Document