Morphology and molecular composition of isolated postsynaptic junctional structures

1978 ◽  
Vol 203 (1151) ◽  
pp. 135-151 ◽  

The solubilization of isolated brain synaptosomal plasma membranes by various detergents was studied and in each case found to depend upon detergent concentration. By using conditions sufficient to extract maximally protein and phospholipid from the membranes, postsynaptic junctional particles were isolated with each of four detergents and their ultrastructural appearances and protein contents compared. Two basic structural forms were identified. One, isolated with Triton X-100, consists of a planar array of dense-staining particles ca . 20 nm in diameter. It resembles the postsynaptic density seen in undigested synapto­somal plasma membranes. The other, isolated with sodium deoxycholate, contains less protein. It has the same overall shape and dimensions as the postsynaptic density, but consists of a branching network of short 5 nm fibres (the postsynaptic junctional lattice) making up an array of contiguous polygons, each ca . 20 nm across. The interior of these poly­gonal elements seems to be hydrophobic since it cannot be penetrated by metallic salts used for negative staining. It is suggested that the dense-staining 20 nm subunits observed at the postsynaptic junctional site may be composed of hydrophobic proteins inserted into the hollow cores of the lattice polygons. Electrophoretic analysis of the proteins present in the various post­synaptic junctional preparations identified two major common components with molecular masses of 275000 and 47500. The latter is tentatively identified as actin. Components comigrating respectively with α-and β-tubulin are present, and the relation of the lattice structure to subjacent microtubules is discussed.

1993 ◽  
Vol 290 (3) ◽  
pp. 791-795 ◽  
Author(s):  
L Klewes ◽  
E A Turley ◽  
P Prehm

The hyaluronate synthase complex was identified in plasma membranes from B6 cells. It contained two subunits of molecular masses 52 kDa and 60 kDa which bound the precursor UDP-GlcA in digitonin solution and partitioned into the aqueous phase, together with nascent hyaluronate upon Triton X-114 phase separation. The 52 kDa protein cross-reacted with poly- and monoclonal antibodies raised against the streptococcal hyaluronate synthase and the 60 kDa protein was recognized by monoclonal antibodies raised against a hyaluronate receptor. The 52 kDa protein was purified to homogeneity by affinity chromatography with monoclonal anti-hyaluronate synthase.


1990 ◽  
Vol 272 (3) ◽  
pp. 749-753 ◽  
Author(s):  
K M Hurst ◽  
B P Hughes ◽  
G J Barritt

1. Guanosine 5′-[gamma-thio]triphosphate (GTP[S]) stimulated by 50% the rate of release of [3H]choline and [3H]phosphorylcholine in rat liver plasma membranes labelled with [3H]choline. About 70% of the radioactivity released in the presence of GTP[S] was [3H]choline and 30% was [3H]phosphorylcholine. 2. The hydrolysis of phosphorylcholine to choline and the conversion of choline to phosphorylcholine did not contribute to the formation of [3H]choline and [3H]phosphorylcholine respectively. 3. The release of [3H]choline from membranes was inhibited by low concentrations of SDS or Triton X-100. Considerably higher concentrations of the detergents were required to inhibit the release of [3H]phosphorylcholine. 4. Guanosine 5′-[beta gamma-imido]triphosphate and guanosine 5′-[alpha beta-methylene]triphosphate, but not adenosine 5′-[gamma-thio]-triphosphate, stimulated [3H]choline release to the same extent as did GTP[S]. The GTP[S]-stimulated [3H]choline release was inhibited by guanosine 5′-[beta-thio]diphosphate, GDP and GTP but not by GMP. 5. It is concluded that, in rat liver plasma membranes, (a) GTP[S]-stimulated hydrolysis of phosphatidylcholine is catalysed predominantly by phospholipase D with some contribution from phospholipase C, and (b) the stimulation of phosphatidylcholine hydrolysis by GTP[s] occurs via a GTP-binding regulatory protein.


1985 ◽  
Vol 227 (2) ◽  
pp. 405-412 ◽  
Author(s):  
P W Cheng ◽  
W E Wingert ◽  
M R Little ◽  
R Wei

We have characterized a bovine tracheal mucin beta-6-N-acetylglucosaminyltransferase that catalyses the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to the C-6 of the N-acetylgalactosamine residue of galactosyl-β 1→3-N-acetylgalactosamine. Optimal enzyme activity was obtained between pH 7.5-8.5, at 5mM-MnCl2, and at 0.06-0.08% (v/v) Triton X-100 (or Nonidet P-40), or 0.5-5.0% (v/v) Tween 20. Ba2+, Mg2+ and Ca2+ could partially replace Mn2+, but Co2+, Fe2+, Cd2+ and Zn2+ could not. Sodium dodecyl sulphate, cetylpyridinium chloride, sodium deoxycholate, octyl beta-D-glucoside, digitonin and alkyl alcohols were less effective in enhancing enzyme activity, and dimethyl sulphoxide was ineffective. The apparent Michaelis constants were 1.25 mM for UDP-N-acetylglucosamine, 0.94-3.34 mM for freezing-point-depressing glycoprotein and 0.19 mM for periodate-treated blood-group-A porcine submaxillary mucin. Asialo ovine submaxillary mucin could not serve as the glycosyl acceptor. The structure of the 14C-labelled oligosaccharide obtained by alkaline-borohydride treatment of the product was identified as Gal beta 1→3(Glc-NAc beta 1→6)N-acetylgalactosaminitol by beta-hexosaminidase treatment, gas chromatography-mass spectrometry and 1H-n.m.r. (270 MHz) analysis. The enzyme is important in the regulation of mucin oligosaccharide biosynthesis.


1985 ◽  
Vol 101 (1) ◽  
pp. 158-166 ◽  
Author(s):  
J P Caulfield ◽  
C M Cianci

We studied the adherence of human erythrocytes to larvae of the intravascular parasite Schistosoma mansoni by transmission microscopy, freeze fracture, and fluorescence techniques. In addition, we used the adherent cells to investigate the problem of host antigen acquisition. Schistosomula were cultured for from 24 to 48 h after transformation in order to clear the remnants of the cercarial glycocalyx. In some cases, the worms were preincubated with wheat germ agglutinin to promote adherence of the erythrocytes. The results were similar with and without the lectin except that more cells attached to the lectin-coated parasites. Erythrocytes adhered within a few hours and, unlike neutrophils, did not fuse with the parasite. A layer of 10-20-nm electron dense material separated the outer leaflets of the tegumental and plasma membranes. In addition, many deformed and lysed cells were seen on the parasite surface. The ability of the worm to acquire erythrocyte membrane constituents was tested with carbocyanine dyes, fluorescein covalently conjugated to glycophorin, monoclonal antibodies against B and H blood group glycolipids, and rabbit alpha-human erythrocyte IgG. In summary, glycophorin, erythrocyte proteins, and glycolipids were not transferred to the parasite membrane within 48 h. Carbocyanine dyes were rapidly transferred to the parasite with or without lectin preincubation. Thus, the dye in the worm membrane came from both adherent and nonadherent cells. These studies suggest that, in the absence of membrane fusion, the parasite may acquire some lipid molecules similar in structure to host membrane glycolipids by simple transfer through the medium but that B and H glycolipids and erythrocyte membrane proteins are not transferred from adhering cells to the worm.


1986 ◽  
Vol 64 (5) ◽  
pp. 448-455 ◽  
Author(s):  
Jacques Rembur ◽  
Pierre Landré ◽  
Arlette Nougarède

The validity of phase partition to obtain a substantial proportion of vesicles of plasmalemma origin from the microsomal fraction of pea epicotyl has been demonstrated. In the fractions enriched with plasma membranes, N-naphthyl phtalamic acid binding and β-glucan synthetase II activity, showed a yield of about 60% and an enrichment of 2.3 and 2.2, respectively, in comparison with the microsomal fraction. When such plasmalemmic vesicles are permabilized by Triton X-100, an intense Mg2+-ATPase activity is obtained in presence of K+ at acid as well as alkaline pH. Inhibition of Mg2+-ATPase by vanadate in presence of K+ and its variations in relation to pH were shown. Dicyclohexylcarbodiimide and diethylstilbestrol inhibit 40–55% of this enzymatic activity, both at acid and neutral pH. The data show a slight contamination of the plasmalemmic fraction by endomembranes and suggest an asymmetry of the two sides of the plasmalemma.


1988 ◽  
Vol 34 (1) ◽  
pp. 152-154
Author(s):  
B E Cham ◽  
P Roeser ◽  
A Nikles

Abstract Lipid-associated ferritin from homogenates of guinea pig liver is released from its conjugate(s) by incubation with the non-ionic detergents Triton X-100 and Nonidet P-40 but not by incubation with the anionic detergent deoxycholate. The amount of lipid-associated ferritin released from its conjugate(s) depends on the concentration of the non-ionic detergents. At a final non-ionic detergent concentration of about 20 g/L, all lipid-associated ferritin is released from its conjugate(s) in a liver homogenate. The amount released is identical with the amount of the lipid-associated ferritin obtained by extraction of the same liver homogenate with a mixture of butanol and diisopropyl ether.


1975 ◽  
Vol 150 (3) ◽  
pp. 537-551 ◽  
Author(s):  
P H Cooper ◽  
J N Hawthorne

Tthe properties of diphosphoinositide and triphosphoinositide phosphatases from rat kidney homogenate were studied in an assay system in which non-specific phosphatase activity was eliminated. The enzymes were not completely metal-ion dependent and were activated by Mg2+. The detergent sodium deoxycholate, Triton X-100 and Cutscum inhibited the reaction; cetyltrimethylammonium bromide only activated when added with the subtrates and in the presence Mg2+. Both enzymes had a pH optimum of 7.5. Ca2+ and Li+ both activated triphosphoinositide phosphatase, but Ca2+ inhibited and L+ had little effect on diphosphoinositide phosphatase. Cyclic AMP had no effect on either enzyme. The enzymes were three times more active in kidney cortex than in the medulla. On subcellular fractionation of kidney-cortex homogenates by differential and density-gradient centrifugation, the distribution of the enzymes resembled that of thiamin pyrophosphatase (assayed in the absence of ATP), suggesting localization in the Golgi complex. However, the distribution differed from that of the liver Golgimarker galactosyltransferase. Activities of both diphosphoinositide and triphosphoinositide phosphatases and thiamin pyrophosphatase were low in purified brush-border fragments. Further experiments indicate that at least part of the phosphatase activity is soluble.


1994 ◽  
Vol 301 (3) ◽  
pp. 793-799 ◽  
Author(s):  
S C Jamdar ◽  
W F Cao

Previously we have identified the presence of two different phosphatidate phosphohydrolase (PPH) activities in rat adipose tissue, based on Mg(2+)-dependency. In the present investigation, we have further characterized these isoenzymes, using both aqueous dispersed and membrane-bound phosphatidate as substrates and differentiated these activities on the basis of both Mg(2+)-dependency and N-ethylmaleimide (NEM)-sensitivity. These two distinguishing criteria gave identical estimates of PPH activities present in the different subcellular fractions. The microsomal and cytosol fractions contained mainly the Mg(2+)-dependent (NEM-sensitive) form, which was inhibited by various thiol reagents, was inactivated by heating at 55 degrees C for 20 min, and was decreased significantly within 2 h after intraperitoneal administration of cystamine (200 mg/kg). Such treatments had no effects on the Mg(2+)-independent (NEM-insensitive) form of PPH, which was mainly located in the plasma membranes, mitochondrial and microsomal fractions. Addition of Lipid A and guanosine 5′-[gamma-thio]triphosphate to the assay mixture had no effect on the PPH activities. The Mg(2+)-independent PPH form, which was thermostable in the intact subcellular fractions, became thermolabile when these fractions were disrupted in the presence of Triton X-100. The present studies demonstrate that: (1) the thermostability is not a satisfactory index to differentiate these isoenzymes; (2) the thiol/disulphide exchange may be involved in the regulation of Mg(2+)-dependent PPH activity; and (3) the PPH isoenzymes do not seem to be under G-protein control in adipose tissue, as reported previously in the mesangial cell line.


1983 ◽  
Vol 103 (2) ◽  
pp. 198-204 ◽  
Author(s):  
Yasuhiro Iida ◽  
Junji Konishi ◽  
Kanji Kasagi ◽  
Keigo Endo ◽  
Takashi Misaki ◽  
...  

Abstract. Human thyroid plasma membranes were solubilized with 0.5% Triton X-100 and TSH receptors were purified by using DEAE-Sephadex, Con A and TSH affinity chromatography. A TSH binding activity was bound to DEAE-Sephadex equilibrated with 0.05 m sodium acetate, pH 6.3, 0.2% Triton X-100 and was eluted by a linear gradient of 0.1 m to 1.0 m ammonium acetate, pH 6.3. Eighty-five per cent of the activity was absorbed to Con A Sepharose and was eluted with 0.5 m α-methyl-D-mannoside, 0.05 m sodium acetate, pH 6.0. Seventy-five per cent of the TSH binding capacity could be absorbed to TSH-affinity column and was eluted with 0.1 m glycine-HCl, pH 3.0. By sequential application of the above procedures, more than 100-fold purification of the receptor activity was attainable. [125I]TSH binding of this fraction was inhibited by addition of unlabelled TSH in a dose-dependent manner. Scatchard analysis gave a curvilinear plot with a high affinity association constant of 0.72 × 109 m−1. By using Ultrogel AcA 34 gel filtration, the molecular size of the hormonereceptor complex was estimated to be 180 000.


1970 ◽  
Vol 120 (1) ◽  
pp. 1-13 ◽  
Author(s):  
R. Rodnight

1. The effect of chemical agents on the turnover of the Na+-dependent bound phosphate and the simultaneous Na+-dependent hydrolysis of ATP by a membrane preparation from ox brain was studied at an ATP/protein ratio of 12.5pmol/μg. 2. The agents were added immediately after phosphorylation of the preparation in a medium containing 50mm-sodium chloride and 2.5μm-[γ-32P]ATP. 3. Concentrations of sodium chloride above 150mm, calcium chloride to 20mm and suramin to 1.4mm inhibited both phosphorylation and dephosphorylation and concomitantly slowed ATP hydrolysis. At 125mm-sodium chloride dephosphorylation and hydrolysis were slightly slowed without affecting phosphorylation. 4. Ethanol to 1.6m concentration inhibited dephosphorylation without affecting phosphorylation; the bound phosphate was increased and ATP hydrolysis slowed. 5. Ouabain to 4mm concentration partially inhibited ATP hydrolysis and caused a transient (1–2s) rise in bound phosphate followed by a rapid fall to a lower plateau value, which eventually declined to zero by the time ATP hydrolysis was complete. 6. Of the detergents examined Lubrol W, Triton X-100 and sodium deoxycholate had no significant effect on turnover. Sodium dodecyl sulphate and sodium decyl sulphate to 3.5mm and 20mm respectively completely inhibited turnover and ATP hydrolysis and stabilized the bound phosphate.


Sign in / Sign up

Export Citation Format

Share Document