scholarly journals Diversification and the adaptive radiation of the vangas of Madagascar

2012 ◽  
Vol 279 (1735) ◽  
pp. 2062-2071 ◽  
Author(s):  
S. Reddy ◽  
A. Driskell ◽  
D. L. Rabosky ◽  
S. J. Hackett ◽  
T. S. Schulenberg

The vangas of Madagascar exhibit extreme diversity in morphology and ecology. Recent studies have shown that several other Malagasy species also are part of this endemic radiation, even as the monophyly of the clade remains in question. Using DNA sequences from 13 genes and representatives of all 15 vanga genera, we find strong support for the monophyly of the Malagasy vangids and their inclusion in a family along with six aberrant genera of shrike-like corvoids distributed in Asia and Africa. Biogeographic reconstructions of these lineages include both Asia and Africa as possible dispersal routes to Madagascar. To study patterns of speciation through time, we introduce a method that can accommodate phylogenetically non-random patterns of incomplete taxon sampling in diversification studies. We demonstrate that speciation rates in vangas decreased dramatically through time following the colonization of Madagascar. Foraging strategies of these birds show remarkable congruence with phylogenetic relationships, indicating that adaptations to feeding specializations played a role in the diversification of these birds. Vangas fit the model of an ‘adaptive radiation’ in that they show an explosive burst of speciation soon after colonization, increased diversification into novel niches and extraordinary ecomorphological diversity.

2020 ◽  
Vol 194 (1) ◽  
pp. 84-99
Author(s):  
Inelia Escobar ◽  
Eduardo Ruiz-Ponce ◽  
Paula J Rudall ◽  
Michael F Fay ◽  
Oscar Toro-Núñez ◽  
...  

Abstract Gilliesieae are a South American tribe of Amaryllidaceae characterized by high floral diversity. Given different taxonomic interpretations and proposals for generic and specific relationships, a representative phylogenetic analysis is required to clarify the systematics of this group. The present study provides a framework for understanding phylogenetic relationships and contributing to the development of an appropriate taxonomic treatment of Gilliesieae. Molecular analyses, based on nuclear (ITS) and plastid DNA sequences (trnL-F and rbcL), resolve with strong support the monophyly of the tribe and the differentiation of two major clades. Clade I comprises the genera Gilliesia, Gethyum and Solaria and Clade II includes Miersia and Speea. These well-supported clades are mostly congruent with vegetative and karyotype characters rather than, e.g., floral symmetry. At the generic level, all molecular analyses reveal the paraphyly of Gilliesia and Miersia. Gethyum was found to be paraphyletic, resulting in the confirmation of Ancrumia as a distinct genus. Several instances of incongruent phylogenetic signals were found among data sets. The calibrated tree suggests a recent diversification of the tribe (Pliocene–Pleistocene), a contemporary process of speciation in which instances of hybridization and incomplete lineage sorting could explain patterns of paraphyly and incongruence of floral morphology.


Zootaxa ◽  
2021 ◽  
Vol 4933 (3) ◽  
pp. 301-323
Author(s):  
ALEXANDRE P. DE ALMEIDA ◽  
LEANDRO J.C.L. MORAES ◽  
ROMMEL R. ROJAS ◽  
IGOR J. ROBERTO ◽  
VINICIUS TADEU DE CARVALHO ◽  
...  

Boana hobbsi is a poorly known hylid frog currently placed within the Boana punctata group. Yet, morphological, ecological and bioacoustic traits do not support this placement, with no molecular data being available to date to test this hypothesis. Based on newly collected mitochondrial DNA sequences, morphological data review and field observations, we provide new insight into the phylogenetic relationships, morphological variations and geographic distribution of B. hobbsi. Our findings reveal that B. hobbsi is nested (with strong support) within the Boana benitezi group, recovering once more a polyphyletic Boana punctata group. Supported by this new genetic, morphological and ecological evidence, we propose a new taxonomic arrangement which includes B. hobbsi as a member of the Boana benitezi group. Furthermore, we emphasize the importance of conducting biological inventories in remote Amazonian areas, where many taxonomic and geographic knowledge gaps persist with regards to Amphibian diversity. 


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12691
Author(s):  
Jiajia Wang ◽  
Yu Bai ◽  
Haifeng Zhao ◽  
Ruinan Mu ◽  
Yan Dong

Background There have been extensive debates on the interrelationships among the four major classes of Myriapoda—Chilopoda, Symphyla, Diplopoda, and Pauropoda. The core controversy is the position of Pauropoda; that is, whether it should be grouped with Symphyla or Diplopoda as a sister group. Two recent phylogenomic studies separately investigated transcriptomic data from 14 and 29 Myriapoda species covering all four groups along with outgroups, and proposed two different topologies of phylogenetic relationships. Methods Building on these studies, we extended the taxon sampling by investigating 39 myriapods and integrating the previously available data with three new transcriptomic datasets generated in this study. Our analyses present the phylogenetic relationships among the four major classes of Myriapoda with a more abundant taxon sampling and provide a new perspective to investigate the above-mentioned question, where visual genes’ identification were conducted. We compared the appearance pattern of genes, grouping them according to their classes and the visual pathways involved. Positive selection was detected for all identified visual genes between every pair of 39 myriapods, and 14 genes showed positive selection among 27 pairs. Results From the results of phylogenomic analyses, we propose that Symphyla is a sister group of Pauropoda. This stance has also received strong support from tree inference and topology tests.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 668
Author(s):  
Tinghao Yu ◽  
Yalin Zhang

More studies are using mitochondrial genomes of insects to explore the sequence variability, evolutionary traits, monophyly of groups and phylogenetic relationships. Controversies remain on the classification of the Mileewinae and the phylogenetic relationships between Mileewinae and other subfamilies remain ambiguous. In this study, we present two newly completed mitogenomes of Mileewinae (Mileewa rufivena Cai and Kuoh 1997 and Ujna puerana Yang and Meng 2010) and conduct comparative mitogenomic analyses based on several different factors. These species have quite similar features, including their nucleotide content, codon usage of protein genes and the secondary structure of tRNA. Gene arrangement is identical and conserved, the same as the putative ancestral pattern of insects. All protein-coding genes of U. puerana began with the start codon ATN, while 5 Mileewa species had the abnormal initiation codon TTG in ND5 and ATP8. Moreover, M. rufivena had an intergenic spacer of 17 bp that could not be found in other mileewine species. Phylogenetic analysis based on three datasets (PCG123, PCG12 and AA) with two methods (maximum likelihood and Bayesian inference) recovered the Mileewinae as a monophyletic group with strong support values. All results in our study indicate that Mileewinae has a closer phylogenetic relationship to Typhlocybinae compared to Cicadellinae. Additionally, six species within Mileewini revealed the relationship (U. puerana + (M. ponta + (M. rufivena + M. alara) + (M. albovittata + M. margheritae))) in most of our phylogenetic trees. These results contribute to the study of the taxonomic status and phylogenetic relationships of Mileewinae.


2009 ◽  
Vol 104 (3) ◽  
pp. 403-416 ◽  
Author(s):  
Gerardo A. Salazar ◽  
Lidia I. Cabrera ◽  
Santiago Madriñán ◽  
Mark W. Chase

Sign in / Sign up

Export Citation Format

Share Document