scholarly journals Negative effects of pesticides on wild bee communities can be buffered by landscape context

2015 ◽  
Vol 282 (1809) ◽  
pp. 20150299 ◽  
Author(s):  
Mia G. Park ◽  
E. J. Blitzer ◽  
Jason Gibbs ◽  
John E. Losey ◽  
Bryan N. Danforth

Wild bee communities provide underappreciated but critical agricultural pollination services. Given predicted global shortages in pollination services, managing agroecosystems to support thriving wild bee communities is, therefore, central to ensuring sustainable food production. Benefits of natural (including semi-natural) habitat for wild bee abundance and diversity on farms are well documented. By contrast, few studies have examined toxicity of pesticides on wild bees, let alone effects of farm-level pesticide exposure on entire bee communities. Whether beneficial natural areas could mediate effects of harmful pesticides on wild bees is also unknown. Here, we assess the effect of conventional pesticide use on the wild bee community visiting apple ( Malus domestica ) within a gradient of percentage natural area in the landscape. Wild bee community abundance and species richness decreased linearly with increasing pesticide use in orchards one year after application; however, pesticide effects on wild bees were buffered by increasing proportion of natural habitat in the surrounding landscape. A significant contribution of fungicides to observed pesticide effects suggests deleterious properties of a class of pesticides that was, until recently, considered benign to bees. Our results demonstrate extended benefits of natural areas for wild pollinators and highlight the importance of considering the landscape context when weighing up the costs of pest management on crop pollination services.

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3051 ◽  
Author(s):  
Étienne Normandin ◽  
Nicolas J. Vereecken ◽  
Christopher M. Buddle ◽  
Valérie Fournier

Urbanization is one of the major anthropogenic processes contributing to local habitat loss and extirpation of numerous species, including wild bees, the most widespread pollinators. Little is known about the mechanisms through which urbanization impacts wild bee communities, or the types of urban green spaces that best promote their conservation in cities. The main objective of this study was to describe and compare wild bee community diversity, structure, and dynamics in two Canadian cities, Montreal and Quebec City. A second objective was to compare functional trait diversity among three habitat types (cemeteries, community gardens and urban parks) within each city. Bees were collected using pan traps and netting on the same 46 sites, multiple times, over the active season in 2012 and 2013. A total of 32,237 specimens were identified, representing 200 species and 6 families, including two new continental records,Hylaeus communisNylander (1852) andAnthidium florentinum(Fabricius, 1775). Despite high community evenness, we found significant abundance of diverse species, including exotic ones. Spatio-temporal analysis showed higher stability in the most urbanized city (Montreal) but low nestedness of species assemblages among the three urban habitats in both cities. Our study demonstrates that cities are home to diverse communities of wild bees, but in turn affect bee community structure and dynamics. We also found that community gardens harbour high levels of functional trait diversity. Urban agriculture therefore contributes substantially to the provision of functionally diverse bee communities and possibly to urban pollination services.


Author(s):  
Rachel A. Nalepa ◽  
Graham Epstein ◽  
Jeremy Pittman ◽  
Sheila R. Colla

Abstract Pollination services are critical for food production. Although domesticated honey bees are important pollinators in agriculture, there is growing interest in supporting naturally occurring wild bees. Diversifying pollination management strategies by encouraging healthy wild bee communities may be especially useful for growers of insect-pollinated crops, such as apples. Although research has identified several land management practices that can enhance local pollinator communities on farms, there are few studies on the factors that influence growers to adopt pollinator-supporting actions on their land. Here, we surveyed 75 Canadian apple growers and used regression models to explore the influence of farm characteristics and perceptions about bees on the likelihood of adopting 15 unique pollinator-supporting practices. We also provide a descriptive analysis of growers' pollination management practices and self-assessed resourcefulness on the ability to improve habitat for wild pollinators on the farm. We found that an increase in three variables: awareness of wild bees, perception of the severity of threats facing wild populations, and the perception of the benefits provided by wild bees is associated with more pollinator-supporting practices on the farm. Overall, growers were less likely to adopt pollinator-friendly practices as the fraction of rented land increased and as the perceived costs of implementing these practices rose. We found ‘low-hanging fruit’ (i.e., pollinator-supporting practices that could be easily and inexpensively implemented) were adopted by less than one-third of growers and that the majority of those surveyed had little to no knowledge on what actions to take if they wanted to improve their farms for wild bees or where to go for that knowledge. Our results suggest that policies and programs that focus on raising grower awareness of wild bees, increasing grower perception of their benefits, and reducing the perceived costs of implementing pollinator-supporting practices may positively affect their uptake. A deeper understanding of grower perceptions will provide essential insight into how growers may contribute to wild pollinator conservation while potentially increasing agricultural production and reducing vulnerability borne of heavy reliance on managed pollinators.


2020 ◽  
Vol 65 (1) ◽  
pp. 39-56 ◽  
Author(s):  
Alexandra Harmon-Threatt

Nest site availability and quality are important for maintaining robust populations and communities of wild bees. However, for most species, nesting traits and nest site conditions are poorly known, limiting both our understanding of basic ecology for bee species and conservation efforts. Additionally, many of the threats commonly associated with reducing bee populations have effects that can extend into nests but are largely unstudied. In general, threats such as habitat disturbances and climate change likely affect nest site availability and nest site conditions, which in turn affect nest initiation, growth, development, and overwintering success of bees. To facilitate a better understanding of how these and other threats may affect nesting bees, in this review, I quantify key nesting traits and environmental conditions and then consider how these traits may intersect with observed and anticipated changes in nesting conditions experienced by wild bees. These data suggest that the effects of common threats to bees through nesting may strongly influence their survival and persistence but are vastly understudied. Increasing research into nesting biology and incorporating nesting information into conservation efforts may help improve conservation of this declining but critical group.


2021 ◽  
Vol 9 ◽  
Author(s):  
Panlong Wu ◽  
Piaopiao Dai ◽  
Meina Wang ◽  
Sijie Feng ◽  
Aruhan Olhnuud ◽  
...  

Bees provide key pollination services for a wide range of crops. Accumulating evidence shows the effect of semi-natural habitats at the landscape level and local management practices on bee diversity in fields. However, most of the evidence is derived from studies in North America and Europe. Whether this paradigm is applicable in China, which is characterized by smallholder-dominated agricultural landscapes, has rarely been studied. In this study, we aimed to investigate how bee diversity affected apple production, and how landscape and local variables affected bee diversity and species composition on the Northern China Plain. The results showed that bees significantly increased apple fruit set compared to bagged controls. Wild bee diversity was positively related to apple seed numbers. Higher seed numbers reduced the proportion of deformed apples and thus increased fruit quality. Wild bee abundance was positively correlated with flowering ground cover, and both the abundance and species richness of wild bees were positively affected by the percentage of semi-natural habitats. We conclude that apple quality can benefit from ecological intensification comprising the augmentation of wild bees by semi-natural habitats and flowering ground cover. Future pollination management should therefore reduce the intensification level of management at both the local and landscape scales.


Data ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 98 ◽  
Author(s):  
Kathleen A Lewis ◽  
John Tzilivakis

Pollination services are vital for agriculture, food security and biodiversity. Although many insect species provide pollination services, honeybees are thought to be the major provider of this service to agriculture. However, the importance of wild bees in this respect should not be overlooked. Whilst regulatory risk assessment processes have, for a long time, included that for pollinators, using honeybees (Apis mellifera) as a protective surrogate, there are concerns that this approach may not be sufficiently adequate particularly because of global declines in pollinating insects. Consequently, risk assessments are now being expanded to include wild bee species such as bumblebees (Bombus spp.) and solitary bees (Osmia spp.). However, toxicity data for these species is scarce and are absent from the main pesticide reference resources. The aim of the study described here was to collate data relating to the acute toxicity of pesticides to wild bee species (both topical and dietary exposure) from published regulatory documents and peer reviewed literature, and to incorporate this into one of the main online resources for pesticide risk assessment data: The Pesticide Properties Database, thus ensuring that the data is maintained and continuously kept up to date. The outcome of this study is a dataset collated from 316 regulatory and peer reviewed articles that contains 178 records covering 120 different pesticides and their variants which includes 142 records for bumblebees and a further 115 records for other wild bee species.


2016 ◽  
Vol 221 ◽  
pp. 1-7 ◽  
Author(s):  
Eleanor J. Blitzer ◽  
Jason Gibbs ◽  
Mia G. Park ◽  
Bryan N. Danforth

2020 ◽  
Vol 49 (2) ◽  
pp. 502-515 ◽  
Author(s):  
Brianne Du Clos ◽  
Francis A Drummond ◽  
Cynthia S Loftin

Abstract Homogeneous, agriculturally intense landscapes have abundant records of pollinator community research, though similar studies in the forest-dominated, heterogeneous mixed-use landscape that dominates the northeastern United States are sparse. Trends of landscape effects on wild bees are consistent across homogeneous agricultural landscapes, whereas reported studies in the northeastern United States have not found this consistency. Additionally, the role of noncrop habitat in mixed-use landscapes is understudied. We assessed wild bee communities in the mixed-use lowbush blueberry (Vaccinium angustifolium Ait.) production landscape of Maine, United States at 56 sites in eight land cover types across two regional landscapes and analyzed effects of floral resources, landscape pattern, and spatial scale on bee abundance and species richness. Within survey sites, cover types with abundant floral resources, including lowbush blueberry fields and urban areas, promoted wild bee abundance and diversity. Cover types with few floral resources such as coniferous and deciduous/mixed forest reduced bee abundance and species richness. In the surrounding landscape, lowbush blueberry promoted bee abundance and diversity, while emergent wetland and forested land cover strongly decreased these measures. Our analysis of landscape configuration revealed that patch mixing can promote wild bee abundance and diversity; however, this was influenced by strong variation across our study landscape. More surveys at intra-regional scales may lead to better understanding of the influence of mixed-use landscapes on bee communities.


2020 ◽  
Vol 49 (6) ◽  
pp. 1437-1448 ◽  
Author(s):  
Gabriel G Foote ◽  
Nathaniel E Foote ◽  
Justin B Runyon ◽  
Darrell W Ross ◽  
Christopher J Fettig

Abstract The status of wild bees has received increased interest following recent estimates of large-scale declines in their abundances across the United States. However, basic information is limited regarding the factors affecting wild bee communities in temperate coniferous forest ecosystems. To assess the early responses of bees to bark beetle disturbance, we sampled the bee community of a Douglas-fir, Pseudotsuga menziesii (Mirb.), forest in western Idaho, United States during a Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins (Coleoptera: Curculionidae), outbreak beginning in summer 2016. We resampled the area in summer 2018 following reductions in forest canopy cover resulting from mortality of dominant and codominant Douglas-fir. Overall, results from rarefaction analyses indicated significant increases in bee diversity (Shannon’s H) in 2018 compared to 2016. Results from ANOVA also showed significant increases in bee abundance and diversity in 2018 compared to 2016. Poisson regression analyses revealed percent tree mortality from Douglas-fir beetle was positively correlated with increases in total bee abundance and species richness, where community response variables displayed a cubic trend with percent tree mortality. Percent reduction in canopy cover from 2016 to 2018 was also correlated with bee species richness and diversity. These findings suggest that wild bee communities may benefit from changes in forest structure following bark beetle outbreaks.


2019 ◽  
Vol 113 (2) ◽  
pp. 562-574 ◽  
Author(s):  
C M McGrady ◽  
R Troyer ◽  
S J Fleischer

Abstract Wild bees supply sufficient pollination in Cucurbita agroecosystems in certain settings; however, some growers continue to stock fields with managed pollinators due to uncertainties of temporal and spatial variation on pollination services supplied by wild bees. Here, we evaluate wild bee pollination activity in wholesale, commercial pumpkin fields over 3 yr. We identified 37 species of bees foraging in commercial pumpkin fields. Honey bees (Apis mellifera L. [Hymenoptera: Apidae]), squash bees (Eucera (Peponapis) Say, Dorchin [Hymenoptera: Apidae]), and bumble bees (Bombus spp., primarily B. impatiens Cresson [Hymenoptera: Apidae]) were the most active pollinator taxa, responsible for over 95% of all pollination visits. Preference for female flowers decreased as distance from field edge increased for several bee taxa. Visitation rates from one key pollinator was negatively affected by field size. Visitation rates for multiple taxa exhibited a curvilinear response as the growing season progressed and responded positively to increasing floral density. We synthesized existing literature to estimate minimum ‘pollination thresholds’ per taxa and determined that each of the most active pollinator taxa exceeded these thresholds independently. Under current conditions, renting honey bee hives may be superfluous in this system. These results can aid growers when executing pollination management strategies and further highlights the importance of monitoring and conserving wild pollinator populations.


2020 ◽  
Vol 49 (3) ◽  
pp. 753-764 ◽  
Author(s):  
Ashley L St. Clair ◽  
Ge Zhang ◽  
Adam G Dolezal ◽  
Matthew E O’Neal ◽  
Amy L Toth

Abstract In the last century, a global transformation of Earth’s surface has occurred due to human activity with extensive agriculture replacing natural ecosystems. Concomitant declines in wild and managed bees are occurring, largely due to a lack of floral resources and inadequate nutrition, caused by conversion to monoculture-based farming. Diversified fruit and vegetable farms may provide an enhanced variety of resources through crops and weedy plants, which have potential to sustain human and bee nutrition. We hypothesized fruit and vegetable farms can enhance honey bee (Hymenoptera: Apidae, Apis mellifera Linnaeus) colony growth and nutritional state over a soybean monoculture, as well as support a more diverse wild bee community. We tracked honey bee colony growth, nutritional state, and wild bee abundance, richness, and diversity in both farm types. Honey bees kept at diversified farms had increased colony weight and preoverwintering nutritional state. Regardless of colony location, precipitous declines in colony weight occurred during autumn and thus colonies were not completely buffered from the stressors of living in a matrix dominated with monocultures. Contrary to our hypothesis, wild bee diversity was greater in soybean, specifically in August, a time when fields are in bloom. These differences were largely driven by four common bee species that performed well in soybean. Overall, these results suggest fruit and vegetable farms provide some benefits for honey bees; however, they do not benefit wild bee communities. Thus, incorporation of natural habitat, rather than diversified farming, in these landscapes, may be a better choice for wild bee conservation efforts.


Sign in / Sign up

Export Citation Format

Share Document