scholarly journals Pollination services for apple are dependent on diverse wild bee communities

2016 ◽  
Vol 221 ◽  
pp. 1-7 ◽  
Author(s):  
Eleanor J. Blitzer ◽  
Jason Gibbs ◽  
Mia G. Park ◽  
Bryan N. Danforth
2015 ◽  
Vol 282 (1809) ◽  
pp. 20150299 ◽  
Author(s):  
Mia G. Park ◽  
E. J. Blitzer ◽  
Jason Gibbs ◽  
John E. Losey ◽  
Bryan N. Danforth

Wild bee communities provide underappreciated but critical agricultural pollination services. Given predicted global shortages in pollination services, managing agroecosystems to support thriving wild bee communities is, therefore, central to ensuring sustainable food production. Benefits of natural (including semi-natural) habitat for wild bee abundance and diversity on farms are well documented. By contrast, few studies have examined toxicity of pesticides on wild bees, let alone effects of farm-level pesticide exposure on entire bee communities. Whether beneficial natural areas could mediate effects of harmful pesticides on wild bees is also unknown. Here, we assess the effect of conventional pesticide use on the wild bee community visiting apple ( Malus domestica ) within a gradient of percentage natural area in the landscape. Wild bee community abundance and species richness decreased linearly with increasing pesticide use in orchards one year after application; however, pesticide effects on wild bees were buffered by increasing proportion of natural habitat in the surrounding landscape. A significant contribution of fungicides to observed pesticide effects suggests deleterious properties of a class of pesticides that was, until recently, considered benign to bees. Our results demonstrate extended benefits of natural areas for wild pollinators and highlight the importance of considering the landscape context when weighing up the costs of pest management on crop pollination services.


Author(s):  
Rachel A. Nalepa ◽  
Graham Epstein ◽  
Jeremy Pittman ◽  
Sheila R. Colla

Abstract Pollination services are critical for food production. Although domesticated honey bees are important pollinators in agriculture, there is growing interest in supporting naturally occurring wild bees. Diversifying pollination management strategies by encouraging healthy wild bee communities may be especially useful for growers of insect-pollinated crops, such as apples. Although research has identified several land management practices that can enhance local pollinator communities on farms, there are few studies on the factors that influence growers to adopt pollinator-supporting actions on their land. Here, we surveyed 75 Canadian apple growers and used regression models to explore the influence of farm characteristics and perceptions about bees on the likelihood of adopting 15 unique pollinator-supporting practices. We also provide a descriptive analysis of growers' pollination management practices and self-assessed resourcefulness on the ability to improve habitat for wild pollinators on the farm. We found that an increase in three variables: awareness of wild bees, perception of the severity of threats facing wild populations, and the perception of the benefits provided by wild bees is associated with more pollinator-supporting practices on the farm. Overall, growers were less likely to adopt pollinator-friendly practices as the fraction of rented land increased and as the perceived costs of implementing these practices rose. We found ‘low-hanging fruit’ (i.e., pollinator-supporting practices that could be easily and inexpensively implemented) were adopted by less than one-third of growers and that the majority of those surveyed had little to no knowledge on what actions to take if they wanted to improve their farms for wild bees or where to go for that knowledge. Our results suggest that policies and programs that focus on raising grower awareness of wild bees, increasing grower perception of their benefits, and reducing the perceived costs of implementing pollinator-supporting practices may positively affect their uptake. A deeper understanding of grower perceptions will provide essential insight into how growers may contribute to wild pollinator conservation while potentially increasing agricultural production and reducing vulnerability borne of heavy reliance on managed pollinators.


2020 ◽  
Vol 77 ◽  
pp. 1-86
Author(s):  
Shelby Kerrin Kilpatrick ◽  
Jason Gibbs ◽  
Martin M. Mikulas ◽  
Sven-Erik Spichiger ◽  
Nancy Ostiguy ◽  
...  

Checklists provide information about the species found in a defined region and serve as baselines for detecting species range expansions, contractions, or introductions. Bees are a diverse and important group of insect pollinators. Although some bee populations are declining, these patterns are difficult to document and generalize due to a lack of long-term studies for most localities. Documenting the diversity of wild bee communities is critical for assessing pollination services, community ecology, and geographical and temporal changes in distribution and density. Here, an updated checklist of the bees of the Commonwealth of Pennsylvania, USA, is presented. Since the first checklist was published (2010; 372 species), thousands of additional specimens from the state have been collected and databased, new species have been described in the region, and the taxonomic status of some species have changed. Specimen data from insect collections, databases, scientific literature, and unpublished records were compared to the original checklist. Seventy-nine new state species records – including 49 first-time reports – representing five of the six bee families in North America, were documented resulting in a total of at least 437 bee species reported from Pennsylvania. We highlight new county records and species persistence details. Our list includes a total of 23 exotic species and at least five species of conservation concern. Lists of species excluded from the state checklist and species anticipated to occur in Pennsylvania are also included. This checklist provides baseline data for researchers and the public. The benefits of insect collections, specimen databases, determination and voucher labels, and georeferencing to biodiversity studies and other aspects of biological research are also discussed.


2006 ◽  
Vol 274 (1608) ◽  
pp. 303-313 ◽  
Author(s):  
Alexandra-Maria Klein ◽  
Bernard E Vaissière ◽  
James H Cane ◽  
Ingolf Steffan-Dewenter ◽  
Saul A Cunningham ◽  
...  

The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
G. M. Angelella ◽  
C. T. McCullough ◽  
M. E. O’Rourke

AbstractPollinator refuges such as wildflower strips are planted on farms with the goals of mitigating wild pollinator declines and promoting crop pollination services. It is unclear, however, whether or how these goals are impacted by managed honey bee (Apis mellifera L.) hives on farms. We examined how wildflower strips and honey bee hives and/or their interaction influence wild bee communities and the fruit count of two pollinator-dependent crops across 21 farms in the Mid-Atlantic U.S. Although wild bee species richness increased with bloom density within wildflower strips, populations did not differ significantly between farms with and without them whereas fruit counts in both crops increased on farms with wildflower strips during one of 2 years. By contrast, wild bee abundance decreased by 48%, species richness by 20%, and strawberry fruit count by 18% across all farm with honey bee hives regardless of wildflower strip presence, and winter squash fruit count was consistently lower on farms with wildflower strips with hives as well. This work demonstrates that honey bee hives could detrimentally affect fruit count and wild bee populations on farms, and that benefits conferred by wildflower strips might not offset these negative impacts. Keeping honey bee hives on farms with wildflower strips could reduce conservation and pollination services.


2020 ◽  
Author(s):  
Alana Pindar ◽  
Adam Hogg ◽  
Nigel E. Raine

Habitat loss and fragmentation are major drivers of global pollinator declines, yet even after recent unprecedented periods of anthropogenic land-use intensification the amount of habitat needed to support pollinators remains unknown. Here we use comprehensive datasets to determine the extent and amount of habitat needed. Safeguarding wild bee communities in a Canadian landscape requires 11.6-16.7% land-cover from a diverse range of habitats (~1.8-3.6x current policy guidelines), irrespective of whether conservation aims are enhancing species richness or abundance. Sensitive habitats, like tallgrass woodlands and wetlands, were important predictors of bee biodiversity. Conservation strategies that under-estimate the extent of habitat, spatial scale and specific habitat needs of functional guilds are unlikely to protect bee communities and the essential pollination services they provide to crops and wild plants.


2020 ◽  
Vol 65 (1) ◽  
pp. 39-56 ◽  
Author(s):  
Alexandra Harmon-Threatt

Nest site availability and quality are important for maintaining robust populations and communities of wild bees. However, for most species, nesting traits and nest site conditions are poorly known, limiting both our understanding of basic ecology for bee species and conservation efforts. Additionally, many of the threats commonly associated with reducing bee populations have effects that can extend into nests but are largely unstudied. In general, threats such as habitat disturbances and climate change likely affect nest site availability and nest site conditions, which in turn affect nest initiation, growth, development, and overwintering success of bees. To facilitate a better understanding of how these and other threats may affect nesting bees, in this review, I quantify key nesting traits and environmental conditions and then consider how these traits may intersect with observed and anticipated changes in nesting conditions experienced by wild bees. These data suggest that the effects of common threats to bees through nesting may strongly influence their survival and persistence but are vastly understudied. Increasing research into nesting biology and incorporating nesting information into conservation efforts may help improve conservation of this declining but critical group.


2017 ◽  
Vol 214 ◽  
pp. 312-319 ◽  
Author(s):  
Tibor Bukovinszky ◽  
Joke Verheijen ◽  
Susan Zwerver ◽  
Esther Klop ◽  
Jacobus C. Biesmeijer ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Panlong Wu ◽  
Piaopiao Dai ◽  
Meina Wang ◽  
Sijie Feng ◽  
Aruhan Olhnuud ◽  
...  

Bees provide key pollination services for a wide range of crops. Accumulating evidence shows the effect of semi-natural habitats at the landscape level and local management practices on bee diversity in fields. However, most of the evidence is derived from studies in North America and Europe. Whether this paradigm is applicable in China, which is characterized by smallholder-dominated agricultural landscapes, has rarely been studied. In this study, we aimed to investigate how bee diversity affected apple production, and how landscape and local variables affected bee diversity and species composition on the Northern China Plain. The results showed that bees significantly increased apple fruit set compared to bagged controls. Wild bee diversity was positively related to apple seed numbers. Higher seed numbers reduced the proportion of deformed apples and thus increased fruit quality. Wild bee abundance was positively correlated with flowering ground cover, and both the abundance and species richness of wild bees were positively affected by the percentage of semi-natural habitats. We conclude that apple quality can benefit from ecological intensification comprising the augmentation of wild bees by semi-natural habitats and flowering ground cover. Future pollination management should therefore reduce the intensification level of management at both the local and landscape scales.


2018 ◽  
Vol 28 (4) ◽  
pp. 1093-1105 ◽  
Author(s):  
Kyle T. Martins ◽  
Cécile H. Albert ◽  
Martin J. Lechowicz ◽  
Andrew Gonzalez

Sign in / Sign up

Export Citation Format

Share Document