scholarly journals Exploring macroevolution using modern and fossil data

2015 ◽  
Vol 282 (1810) ◽  
pp. 20150569 ◽  
Author(s):  
Michael J. Benton

Macroevolution, encompassing the deep-time patterns of the origins of modern biodiversity, has been discussed in many contexts. Non-Darwinian models such as macromutations have been proposed as a means of bridging seemingly large gaps in knowledge, or as a means to explain the origin of exquisitely adapted body plans. However, such gaps can be spanned by new fossil finds, and complex, integrated organisms can be shown to have evolved piecemeal. For example, the fossil record between dinosaurs and Archaeopteryx has now filled up with astonishing fossil intermediates that show how the unique plexus of avian adaptations emerged step by step over 60 Myr. New numerical approaches to morphometrics and phylogenetic comparative methods allow palaeontologists and biologists to work together on deep-time questions of evolution, to explore how diversity, morphology and function have changed through time. Patterns are more complex than sometimes expected, with frequent decoupling of species diversity and morphological diversity, pointing to the need for some new generalizations about the processes that lie behind such patterns.

2016 ◽  
Vol 371 (1691) ◽  
pp. 20150223 ◽  
Author(s):  
Clive N. Trueman ◽  
Ming-Tsung Chung ◽  
Diana Shores

The fossil record provides the only direct evidence of temporal trends in biodiversity over evolutionary timescales. Studies of biodiversity using the fossil record are, however, largely limited to discussions of taxonomic and/or morphological diversity. Behavioural and physiological traits that are likely to be under strong selection are largely obscured from the body fossil record. Similar problems exist in modern ecosystems where animals are difficult to access. In this review, we illustrate some of the common conceptual and methodological ground shared between those studying behavioural ecology in deep time and in inaccessible modern ecosystems. We discuss emerging ecogeochemical methods used to explore population connectivity and genetic drift, life-history traits and field metabolic rate and discuss some of the additional problems associated with applying these methods in deep time.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10356
Author(s):  
Viktor A. Baranov ◽  
Yinan Wang ◽  
Rok Gašparič ◽  
Sonja Wedmann ◽  
Joachim T. Haug

Stratiomyomorpha (soldier flies and allies) is an ingroup of Diptera, with a fossil record stretching back to the Early Cretaceous (the Barremian, about 125 MYA). Stratiomyomorpha includes at least 3,000 species in the modern fauna, with many species being crucial for ecosystem functions, especially as saprophages. Larvae of many stratiomyomorphans are especially important as scavengers and saproxyls in modern ecosystems. Yet, fossil larvae of the group are extremely scarce. Here we present 23 new records of fossil stratiomyomorphan larvae, representing six discrete morphotypes. Specimens originate from Cretaceous amber from Myanmar, Eocene Baltic amber, Miocene Dominican amber, and compression fossils from the Eocene of Messel (Germany) and the Miocene of Slovenia. We discuss the implications of these new records for our understanding of stratiomyomorphan ecomorphology in deep time as well as their palaeoecology.


2017 ◽  
Vol 91 (4) ◽  
pp. 799-814 ◽  
Author(s):  
David F. Wright

AbstractKnowledge of phylogenetic relationships among species is fundamental to understanding basic patterns in evolution and underpins nearly all research programs in biology and paleontology. However, most methods of phylogenetic inference typically used by paleontologists do not accommodate the idiosyncrasies of fossil data and therefore do not take full advantage of the information provided by the fossil record. The advent of Bayesian ‘tip-dating’ approaches to phylogeny estimation is especially promising for paleosystematists because time-stamped comparative data can be combined with probabilistic models tailored to accommodate the study of fossil taxa. Under a Bayesian framework, the recently developed fossilized birth–death (FBD) process provides a more realistic tree prior model for paleontological data that accounts for macroevolutionary dynamics, preservation, and sampling when inferring phylogenetic trees containing fossils. In addition, the FBD tree prior allows for the possibility of sampling ancestral morphotaxa. Although paleontologists are increasingly embracing probabilistic phylogenetic methods, these recent developments have not previously been applied to the deep-time invertebrate fossil record. Here, I examine phylogenetic relationships among Ordovician through Devonian crinoids using a Bayesian tip-dating approach. Results support several clades recognized in previous analyses sampling only Ordovician taxa, but also reveal instances where phylogenetic affinities are more complex and extensive revisions are necessary, particularly among the Cladida. The name Porocrinoidea is proposed for a well-supported clade of Ordovician ‘cyathocrine’ cladids and hybocrinids. The Eucladida is proposed as a clade name for the sister group of the Flexibilia herein comprised of cladids variously considered ‘cyathocrines,’ ‘dendrocrines,’ and/or ‘poteriocrines’ by other authors.


Paleobiology ◽  
2021 ◽  
pp. 1-17
Author(s):  
Julia Türtscher ◽  
Faviel A. López-Romero ◽  
Patrick L. Jambura ◽  
René Kindlimann ◽  
David J. Ward ◽  
...  

Abstract Sharks have a long and rich fossil record that consists predominantly of isolated teeth due to the poorly mineralized cartilaginous skeleton. Tiger sharks (Galeocerdo), which represent apex predators in modern oceans, have a known fossil record extending back into the early Eocene (ca. 56 Ma) and comprise 22 recognized extinct and one extant species to date. However, many of the fossil species remain dubious, resulting in a still unresolved evolutionary history of the tiger shark genus. Here, we present a revision of the fossil record of Galeocerdo by examining the morphological diversity and disparity of teeth in deep time. We use landmark-based geometric morphometrics to quantify tooth shapes and qualitative morphological characters for species discrimination. Employing this combined approach on fossil and extant tiger shark teeth, our results only support six species to represent valid taxa. Furthermore, the disparity analysis revealed that diversity and disparity are not implicitly correlated and that Galeocerdo retained a relatively high dental disparity since the Miocene despite its decrease from four to one species. With this study, we demonstrate that the combined approach of quantitative geometric morphometric techniques and qualitative morphological comparisons on isolated shark teeth provides a useful tool to distinguish between species with highly similar tooth morphologies.


1992 ◽  
Vol 6 ◽  
pp. 16-16 ◽  
Author(s):  
Richard K. Bambach ◽  
J. John Sepkoski

The first two ranks above the species level in the traditional Linnean hierarchy — the genus and family — are species based: genera have been erected to unify groups of morphologically similar, closely related species and families have been erected to group genera recognized as closely related because of the shared morphologic characteristics of their species. Diversity patterns of traditional genera and families thus appear congruent with those of species in (a) the Recent (e. g., latitudinal gradients in many groups), (b) compilations of all marine taxa for the entire Phanerozoic (including the stage level), (c) comparisons through time within individual taxa (e. g., Foraminifera, Rugosa, Conodonta), and (d) simulation studies. Genera and families often have a more robust fossil record of diversity than species, especially for poorly sampled groups (e. g., echinoids), because of the range-through record of these polytypic taxa. Simulation studies indicate that paraphyly among traditionally defined taxa is not a fatal problem for diversity studies; in fact, when degradation of the quality of the fossil record is modelled, both diversity and rates of origination and extinction are better represented by including paraphyletic taxa than by restricting data to monophyletic clades. This result underscores the utility of traditional rank-based analyses of the history of diversity.In contrast, the three higher ranks of the Linnean hierarchy — orders, classes and phyla — are defined and recognized by key character complexes assumed to be rooted deep in the developmental program and, therefore, considered to be of special significance. These taxa are unified on the basis of body plan and function, not species morphology. Even if paraphyletic, recognition of such taxa is useful because they represent different functional complexes that reflect biological organization and major evolutionary innovations, often with different ecological capacities. Phanerozoic diversity patterns of orders, classes and phyla are not congruent with those of lower taxa; the higher groups each increased rapidly in the early Paleozoic, during the explosive diversification of body plans in the Cambrian, and then remained stable or declined slightly after the Ordovician. The diversity history of orders superficially resembles that of lower taxa, but this is a result only of ordinal turnover among the Echinodermata coupled with ordinal radiation in the Chordata; it is not a highly damped signal derived from the diversity of species, genera, or families. Despite the stability of numbers among post-Ordovician Linnean higher taxa, the diversity of lower taxa within many of these Bauplan groups fluctuated widely, and these diversity patterns signal embedded ecologic information, such as differences in flexibility in filling or utilizing ecospace.Phylogenetic analysis is vital for understanding the origins and genealogical structure of higher taxa. Only in such fashion can convergence and its implications for ecological constraints and/or opportunities be understood. But blind insistence on the use of monophyletic classifications in all studies would obscure some of the important information contained in traditional taxonomic groupings. The developmental modifications that characterize Linnean higher taxa (and traditionally separate them from their paraphyletic ancestral taxa) provide keys to understanding the role of shifting ecology in macroevolutionary success.


Genetics ◽  
2021 ◽  
Author(s):  
Hana E Littleford ◽  
Karin Kiontke ◽  
David H A Fitch ◽  
Iva Greenwald

Abstract Specialized cells of the somatic gonad primordium of nematodes play important roles in the final form and function of the mature gonad. C. elegans hermaphrodites are somatic females that have a two-armed, U-shaped gonad that connects to the vulva at the midbody. The outgrowth of each gonad arm from the somatic gonad primordium is led by two female Distal Tip Cells (fDTC), while the Anchor Cell (AC) remains stationary and central to coordinate uterine and vulval development. The bHLH protein HLH-2 and its dimerization partners LIN-32 and HLH-12 had previously been shown to be required for fDTC specification. Here, we show that ectopic expression of both HLH-12 and LIN-32 in cells with AC potential transiently transforms them into fDTC-like cells. Furthermore, hlh-12 was known to be required for the fDTCs to sustain gonad arm outgrowth. Here, we show that ectopic expression of HLH-12 in the normally stationary AC causes displacement from its normal position, and that displacement likely results from activation of the leader program of fDTCs because it requires genes necessary for gonad arm outgrowth. Thus, HLH-12 is both necessary and sufficient to promote gonadal regulatory cell migration. As differences in female gonadal morphology of different nematode species reflect differences in the fate or migratory properties of the fDTCs or of the AC, we hypothesized that evolutionary changes in the expression of hlh-12 may underlie evolution of such morphological diversity. However, we were unable to identify an hlh-12 ortholog outside of Caenorhabditis. Instead, by performing a comprehensive phylogenetic analysis of all Class II bHLH proteins in multiple nematode species, we found that HLH-12 evolved within the Caenorhabditis clade, possibly by duplicative transposition of hlh-10. Our analysis suggests that control of gene regulatory hierarchies for gonadogenesis can be remarkably plastic during evolution without adverse phenotypic consequence.


2021 ◽  
Vol 4 (1) ◽  
pp. 001-014
Author(s):  
MATHIAS JASCHHOF

Twenty-four fossil gall midges (Cecidomyiidae) described from 1917–2020 from Mesozoic deposits, mostly ambers, are reviewed. Information from the original publications is used as the basis for reinterpretation, when such is regarded as appropriate here. As a result, the fossil record of cecidomyiids from the Mesozoic comprises representatives of the following subfamilies and tribes, all mycophagous (numbers in parentheses refer to species described): Catotrichinae (1); Micromyinae: Catochini (2), Amediini (1), Campylomyzini (1), Micromyini (2) and Aprionini (1); Winnertziinae: Heteropezini (2), Diallactiini (4) and Winnertziini (1); Porricondylinae: Dicerurini (1). Other Winnertziinae (3) and Micromyinae (5) cannot be classified to tribe because information on critical morphological structures is unavailable; they are thus considered incertae sedis. Members of the Lestremiinae sensu stricto are unrecorded from the Mesozoic, as are any Cecidomyiinae (the only subfamily containing phytophages and predators). Commonly occurring reasons for misinterpretation of amber fossils are the non-recognition of artefacts and the unfamiliarity with group-specific literature regarding prevailing taxonomic concepts and the morphological diversity found in Cecidomyiidae. These causes as well as obvious differences between neontological and paleontological taxonomic practices are discussed. Amediini trib. nov. Jaschhof, 2021 is introduced as a new tribe of the Micromyinae, to absorb the genera Amedia Jaschhof, 1997 (extant, North America, type genus), Amediella Jaschhof, 2003 (extant, New Zealand) and Eltxo Arillo & Nel, 2000 (extinct, Alava amber). A diagnosis of the new tribe is given. Krassiloviolini Fedotova & Perkovsky, 2017 is a new junior synonym of Heteropezini Schiner, 1868. Amediini Plakidas, 2017 and Zarqacecidomyius singularis Kaddumi, 2007 are nomina nuda.


2016 ◽  
Vol 371 (1691) ◽  
pp. 20150225 ◽  
Author(s):  
Daniele Silvestro ◽  
Alexander Zizka ◽  
Christine D. Bacon ◽  
Borja Cascales-Miñana ◽  
Nicolas Salamin ◽  
...  

Methods in historical biogeography have revolutionized our ability to infer the evolution of ancestral geographical ranges from phylogenies of extant taxa, the rates of dispersals, and biotic connectivity among areas. However, extant taxa are likely to provide limited and potentially biased information about past biogeographic processes, due to extinction, asymmetrical dispersals and variable connectivity among areas. Fossil data hold considerable information about past distribution of lineages, but suffer from largely incomplete sampling. Here we present a new dispersal–extinction–sampling (DES) model, which estimates biogeographic parameters using fossil occurrences instead of phylogenetic trees. The model estimates dispersal and extinction rates while explicitly accounting for the incompleteness of the fossil record. Rates can vary between areas and through time, thus providing the opportunity to assess complex scenarios of biogeographic evolution. We implement the DES model in a Bayesian framework and demonstrate through simulations that it can accurately infer all the relevant parameters. We demonstrate the use of our model by analysing the Cenozoic fossil record of land plants and inferring dispersal and extinction rates across Eurasia and North America. Our results show that biogeographic range evolution is not a time-homogeneous process, as assumed in most phylogenetic analyses, but varies through time and between areas. In our empirical assessment, this is shown by the striking predominance of plant dispersals from Eurasia into North America during the Eocene climatic cooling, followed by a shift in the opposite direction, and finally, a balance in biotic interchange since the middle Miocene. We conclude by discussing the potential of fossil-based analyses to test biogeographic hypotheses and improve phylogenetic methods in historical biogeography.


Author(s):  
Ricardo Paredes

The accuracy on taxonomic determinations of palaeontology collections may have significant consequences in estimations of organism diversity through time. This justifies the need of taxonomic standardization of palaeontological collections. The perception of palaeodiversity through Phanerozoic time has significantly improved since the Sepkoski showed the marine invertebrate taxonomic data in diversity graphs, organized in orders (Sepkoski 1978) and families (Sepkoski 1979, Sepkoski 1984). The visual impact of these graphs engaged palaeontologists into gathering quantitative macroevolution in order to better understand marine palaeodiversity. Alroy et al. (2008) presented a rebuilt diversity curve based on genus-level in a large sample record. These and other statistically sound and standardized datasets of fossil occurrences have combined sources as literature, databases, and museum collections data as a foundation. Integration of these datasets with the entire fossil record based on individual specimens in space and time would be the ideal approach to species-level taxonomy standards determinations. An example showing how this approach may be achieved is the use of initiatives such as the Web-based data facility Palaeontology Database (PdB) which includes a large amount of fossil record data from throughout the world. The major advantage of that is to gather institucional and also private palaeontological collections with taxonomy experts validation. The core of these datasets is the taxon, with the species as the expected most reliable unit. Taxonomy is therefore the discipline enrolled in the process with the taxonomist at the centre of the process. Updated taxonomy is crucial to create reliable datasets and a careful approach should prevent biased data due to under- or overestimation of diversity. Palaeontological museum collections are known to be one of the largest repositories of fossil data. Taxonomic standardization of palaeontology collections in the context of a museum should: Engage taxonomists in revising fossil clades of the museum material; Promote networking and museum researcher peers involved in similar collections activities; Avoid replication of errors in taxonomic determinations (e.g. exclusive use of Web-based databases sources of taxonomy); Use type material to compare with the collection specimens; Critically analyse previous taxonomic determinations on old labels and associated specimen information; Promote the accessibility of the collection to the research community; Emphasize digitisation of specimen catalogue records as well as 2D imaging of the specimens. Engage taxonomists in revising fossil clades of the museum material; Promote networking and museum researcher peers involved in similar collections activities; Avoid replication of errors in taxonomic determinations (e.g. exclusive use of Web-based databases sources of taxonomy); Use type material to compare with the collection specimens; Critically analyse previous taxonomic determinations on old labels and associated specimen information; Promote the accessibility of the collection to the research community; Emphasize digitisation of specimen catalogue records as well as 2D imaging of the specimens. These practices are valuable complements to current methodologies adopted to improve the taxonomy of collections, resulting in more reliable data which further enables museum-based research focusing on palaeodiversity estimations.


Sign in / Sign up

Export Citation Format

Share Document