tiger shark
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 38)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Neil Hammerschlag ◽  
Laura H. McDonnell ◽  
Mitchell J. Rider ◽  
Garrett M. Street ◽  
Elliott L. Hazen ◽  
...  

2021 ◽  
pp. 030098582110526
Author(s):  
Abigail R. Armwood ◽  
Justin M. Stilwell ◽  
Terry Fei Fan Ng ◽  
Tonya M. Clauss ◽  
John H. Leary ◽  
...  

A juvenile, male tiger shark ( Galeocerdo cuvier) developed illness after capture in Florida waters and was euthanized. Gross lesions included mild skin abrasions, hepatic atrophy, and coelomic fluid. Histologically, gills contained multifocal lamellar epithelial cell necrosis and thromboses. Scattered gill and esophageal epithelial cells had large, basophilic, intracytoplasmic, and intranuclear inclusions. Ultrastructurally, lamellar epithelial cells contained arrays of intracytoplasmic viral particles and scattered intranuclear nucleocapsids. Capsulated virions were 148 ± 11 nm with an 84 ± 8 nm icosahedral nucleocapsid and an electron-dense core. Next-generation sequencing, quantitative polymerase chain reaction, and in situ hybridization performed on formalin-fixed tissue confirmed a herpes-like viral infection. The viral polymerase shared 24% to 31% protein homology with other alloherpesviruses of fish, indicating a divergent virus. This report documents the pathologic findings associated with a molecularly confirmed novel herpes-like virus in an elasmobranch.


2021 ◽  
Vol 8 ◽  
Author(s):  
Austin J. Gallagher ◽  
Nourah A. Alsudairy ◽  
Brendan D. Shea ◽  
Nicholas L. Payne ◽  
Carlos M. Duarte

Animal-borne video camera systems have long-been used to capture the fine-scale behaviors and unknown aspects of the biology of marine animals. However, their utility to serve as robust scientific tools in the greater bio-logging research community has not been fully realized. Here we provide, for the first time, an application of 360-degree camera technology to a marine organism, using a large tiger shark as a proof-of-concept case study. Leveraging the three-dimensional nature of the imaging technology, we derived 224 seafloor habitat assessments over the course of the nearly 1-h track, whereby the shark was able to survey ∼23,000 square meters of seafloor; over three-times greater than the capacity of non 360-degree cameras. The resulting data provided detailed information on habitat use, diving behavior, and swimming speed, as well seafloor mapping. Our results suggest that 360-degree cameras provide complimentary benefits—and in some cases superior efficiency—than unidirectional video packages, with an enhanced capacity to map seafloor.


2021 ◽  
Vol 8 ◽  
Author(s):  
Aylin Ulman ◽  
Holden E. Harris ◽  
Nikos Doumpas ◽  
Hasan Deniz Akbora ◽  
Sara A. A Al Mabruk ◽  
...  

The silver-cheeked toadfish (Lagocephalus sceleratus, from the pufferfish family Tetraodontidae) and the Pacific red lionfish (Pterois miles, family Scorpaenidae) have recently invaded the Mediterranean Sea. Lagocephalus sceleratus has spread throughout this entire sea with the highest concentrations in the eastern basin, while more recently, Pterois miles has spread from the Eastern to the Central Mediterranean Sea. Their effects on local biodiversity and fisheries are cause for management concern. Here, a comprehensive review of predators of these two species from their native Indo-Pacific and invaded Mediterranean and Western Atlantic ranges is presented. Predators of Tetraodontidae in general were reviewed for their native Indo-Pacific and Western Atlantic ranges, as no records were found specifically for L. sceleratus in its native range. Tetraodontidae predators in their native ranges included mantis shrimp (Stomatopoda), lizardfish (Synodus spp.), tiger shark (Galeocerdo cuvier), lemon shark (Negaprion brevirostris), sea snakes (Enhydrina spp.), catfish (Arius spp.), cobia (Rachycentron canadum), skipjack tuna (Katsuwonus pelamis), and common octopus (Octopus vulgaris). The only reported predator of adult L. sceleratus in the Mediterranean was loggerhead turtle (Caretta caretta), whereas juvenile L. sceleratus were preyed by common dolphinfish (Coryphaena hippurus) and garfish (Belone belone). Conspecific cannibalism of L. sceleratus juveniles was also confirmed in the Mediterranean. Pufferfish predators in the Western Atlantic included common octopus, frogfish (Antennaridae), and several marine birds. Predators of all lionfish species in their native Indo-Pacific range included humpback scorpionfish (Scorpaenopsis spp.), bobbit worms (Eunice aphroditois), moray eels (Muraenidae), and bluespotted cornetfish (Fistularia commersonii). Lionfish predators in the Mediterranean included dusky grouper (Epinephelus marginatus), white grouper (Epinephelus aeneus), common octopus, and L. sceleratus, whereas in the Western Atlantic included the spotted moray (Gymnothorax moringa), multiple grouper species (tiger Mycteroperca tigris, Nassau Epinephelus striatus, black Mycteroperca bonaci, red Epinephelus morio, and gag Mycteroperca microleps; Epinephelidae), northern red snapper (Lutjanus campechanus), greater amberjack (Seriola dumerilli), and nurse shark (Ginglymostoma cirratum). The sparse data found on natural predation for these species suggest that population control via predation may be limited. Their population control may require proactive, targeted human removals, as is currently practiced with lionfish in the Western Atlantic.


Author(s):  
Belen Jimenez Mena ◽  
Hugo Flávio ◽  
Romina Henriques ◽  
Alice Manuzzi ◽  
Miguel Ramos ◽  
...  

Targeted sequencing is an increasingly popular Next Generation Sequencing (NGS) approach for studying populations, through focusing sequencing efforts on specific parts of the genome of a species of interest. Methodologies and tools for designing targeted baits are scarce but in high demand. Here, we present specific guidelines and considerations for designing capture sequencing experiments for population genetics for both neutral genomic regions and regions subject to selection. We describe the bait design process for three diverse fish species: Atlantic salmon, Atlantic cod and tiger shark, which was carried out in our research group, and provide an evaluation of the performance of our approach across both historical and modern samples. The workflow used for designing these three bait sets has been implemented in the R-package supeRbaits, which encompass our considerations and guidelines for bait design to benefit researchers and practitioners. The supeRbaits R package is user‐friendly and versatile. It is written in C++ and implemented in R. supeRbaits and its manual are available from Github: https://github.com/BelenJM/supeRbaits


2021 ◽  
Author(s):  
Marta Cambra ◽  
Sergio Madrigal‐Mora ◽  
Isaac Chinchilla ◽  
Geiner Golfín‐Duarte ◽  
Christopher G. Lowe ◽  
...  

Paleobiology ◽  
2021 ◽  
pp. 1-17
Author(s):  
Julia Türtscher ◽  
Faviel A. López-Romero ◽  
Patrick L. Jambura ◽  
René Kindlimann ◽  
David J. Ward ◽  
...  

Abstract Sharks have a long and rich fossil record that consists predominantly of isolated teeth due to the poorly mineralized cartilaginous skeleton. Tiger sharks (Galeocerdo), which represent apex predators in modern oceans, have a known fossil record extending back into the early Eocene (ca. 56 Ma) and comprise 22 recognized extinct and one extant species to date. However, many of the fossil species remain dubious, resulting in a still unresolved evolutionary history of the tiger shark genus. Here, we present a revision of the fossil record of Galeocerdo by examining the morphological diversity and disparity of teeth in deep time. We use landmark-based geometric morphometrics to quantify tooth shapes and qualitative morphological characters for species discrimination. Employing this combined approach on fossil and extant tiger shark teeth, our results only support six species to represent valid taxa. Furthermore, the disparity analysis revealed that diversity and disparity are not implicitly correlated and that Galeocerdo retained a relatively high dental disparity since the Miocene despite its decrease from four to one species. With this study, we demonstrate that the combined approach of quantitative geometric morphometric techniques and qualitative morphological comparisons on isolated shark teeth provides a useful tool to distinguish between species with highly similar tooth morphologies.


2021 ◽  
Author(s):  
Alice Manuzzi ◽  
Belen Jiménez-Mena ◽  
Romina Henriques ◽  
Bonnie J. Holmes ◽  
Julian Pepperell ◽  
...  

Abstract Over the last century, many populations of sharks have been reduced in numbers by overexploitation or attempts to mitigate human-shark interactions. Still, there is a general perception that populations of large ocean predators cover wide areas and therefore their diversity is less susceptible to local anthropogenic disturbance. Here we report retrospective genomic analyses of DNA using archived and contemporary samples of tiger shark (Galeocerdo cuvier) from eastern Australia. Using SNP loci, we documented a significant overall change in genetic composition of tiger sharks born over the last century. The change was most likely due to a shift over time in the relative contribution of two well differentiated, but hitherto cryptic populations. Our data strongly indicate a dramatic shift in relative contribution of the two populations to the overall tiger shark abundance of the east coast of Australia, possibly associated with differences in direct or indirect exploitation rates.


Sign in / Sign up

Export Citation Format

Share Document