scholarly journals Morphologically cryptic Amazonian bird species pairs exhibit strong postzygotic reproductive isolation

2018 ◽  
Vol 285 (1874) ◽  
pp. 20172081 ◽  
Author(s):  
Paola Pulido-Santacruz ◽  
Alexandre Aleixo ◽  
Jason T. Weir

We possess limited understanding of how speciation unfolds in the most species-rich region of the planet—the Amazon basin. Hybrid zones provide valuable information on the evolution of reproductive isolation, but few studies of Amazonian vertebrate hybrid zones have rigorously examined the genome-wide underpinnings of reproductive isolation. We used genome-wide genetic datasets to show that two deeply diverged, but morphologically cryptic sister species of forest understorey birds show little evidence for prezygotic reproductive isolation, but substantial postzygotic isolation. Patterns of heterozygosity and hybrid index revealed that hybrid classes with heavily recombined genomes are rare and closely match simulations with high levels of selection against hybrids. Genomic and geographical clines exhibit a remarkable similarity across loci in cline centres, and have exceptionally narrow cline widths, suggesting that postzygotic isolation is driven by genetic incompatibilities at many loci, rather than a few loci of strong effect. We propose Amazonian understorey forest birds speciate slowly via gradual accumulation of postzygotic genetic incompatibilities, with prezygotic barriers playing a less important role. Our results suggest old, cryptic Amazonian taxa classified as subspecies could have substantial postzygotic isolation deserving species recognition and that species richness is likely to be substantially underestimated in Amazonia.

Author(s):  
S. Eryn McFarlane ◽  
Helen V. Senn ◽  
Stephanie L. Smith ◽  
Josephine M. Pemberton

AbstractClosely related species that have previously inhabited geographically separated ranges are hybridizing at an increasing rate due to human disruptions. These anthropogenic hybrid zones can be used to study reproductive isolation between species at secondary contact, including examining locus-specific rates of introgression. Introgression is expected to be heterogenous across the genome, reflecting variation in selection. Those loci that introgress especially slowly are good candidates for being involved in reproductive isolation, while those loci that introgress quickly may be involved in adaptive introgression. In the context of conservation, policy makers are especially concerned about introduced alleles moving quickly into the background of a native or endemic species, as these alleles could replace the native alleles in the population, leading to extinction via hybridization. We applied genomic cline analyses to 44997 SNPs to identify loci introgressing at excessive rates when compared to the genome wide expectation in an anthropogenic hybridizing population of red deer and sika in Kintyre Scotland. We found 11.4% of SNPs had cline centers that were significantly different from the genome wide expectation, and 17.6% had excessive rates of introgression. Based on simulations, we believe that many of these markers have diverged from average due to drift, rather than because of selection. Future work could determine the policy implications of allelic-replacement due to drift rather than selection, and could use replicate, geographically distinct hybrid zones to narrow down those loci that are indeed responding to selection in anthropogenic hybrid zones.


2019 ◽  
Vol 69 (4) ◽  
pp. 708-721 ◽  
Author(s):  
Luke C Campillo ◽  
Anthony J Barley ◽  
Robert C Thomson

Abstract A large and growing fraction of systematists define species as independently evolving lineages that may be recognized by analyzing the population genetic history of alleles sampled from individuals belonging to those species. This has motivated the development of increasingly sophisticated statistical models rooted in the multispecies coalescent process. Specifically, these models allow for simultaneous estimation of the number of species present in a sample of individuals and the phylogenetic history of those species using only DNA sequence data from independent loci. These methods hold extraordinary promise for increasing the efficiency of species discovery but require extensive validation to ensure that they are accurate and precise. Whether the species identified by these methods correspond to the species that would be recognized by alternative species recognition criteria (such as measurements of reproductive isolation) is currently an open question and a subject of vigorous debate. Here, we perform an empirical test of these methods by making use of a classic model system in the history of speciation research, flies of the genus Drosophila. Specifically, we use the uniquely comprehensive data on reproductive isolation that is available for this system, along with DNA sequence data, to ask whether Drosophila species inferred under the multispecies coalescent model correspond to those recognized by many decades of speciation research. We found that coalescent based and reproductive isolation-based methods of inferring species boundaries are concordant for 77% of the species pairs. We explore and discuss potential explanations for these discrepancies. We also found that the amount of prezygotic isolation between two species is a strong predictor of the posterior probability of species boundaries based on DNA sequence data, regardless of whether the species pairs are sympatrically or allopatrically distributed. [BPP; Drosophila speciation; genetic distance; multispecies coalescent.]


2019 ◽  
Vol 36 (11) ◽  
pp. 2481-2497 ◽  
Author(s):  
Laura L Dean ◽  
Isabel S Magalhaes ◽  
Andrew Foote ◽  
Daniele D’Agostino ◽  
Suzanne McGowan ◽  
...  

Abstract Ecological speciation has become a popular model for the development and maintenance of reproductive isolation in closely related sympatric pairs of species or ecotypes. An implicit assumption has been that such pairs originate (possibly with gene flow) from a recent, genetically homogeneous ancestor. However, recent genomic data have revealed that currently sympatric taxa are often a result of secondary contact between ancestrally allopatric lineages. This has sparked an interest in the importance of initial hybridization upon secondary contact, with genomic reanalysis of classic examples of ecological speciation often implicating admixture in speciation. We describe a novel occurrence of unusually well-developed reproductive isolation in a model system for ecological speciation: the three-spined stickleback (Gasterosteus aculeatus), breeding sympatrically in multiple lagoons on the Scottish island of North Uist. Using morphological data, targeted genotyping, and genome-wide single-nucleotide polymorphism data, we show that lagoon resident and anadromous ecotypes are strongly reproductively isolated with an estimated hybridization rate of only ∼1%. We use palaeoecological and genetic data to test three hypotheses to explain the existence of these species-pairs. Our results suggest that recent, purely ecological speciation from a genetically homogeneous ancestor is probably not solely responsible for the evolution of species-pairs. Instead, we reveal a complex colonization history with multiple ancestral lineages contributing to the genetic composition of species-pairs, alongside strong disruptive selection. Our results imply a role for admixture upon secondary contact and are consistent with the recent suggestion that the genomic underpinning of ecological speciation often has an older, allopatric origin.


2019 ◽  
Author(s):  
Luke C. Campillo ◽  
Anthony J. Barley ◽  
Robert C. Thomson

ABSTRACTA large and growing fraction of systematists define species as independently evolving lineages that may be recognized by analyzing the population genetic history of alleles sampled from individuals belonging to those species. This has motivated the development of increasingly sophisticated statistical models rooted in the multispecies coalescent process. Specifically, these models allow for simultaneous estimation of the number of species present in a sample of individuals and the phylogenetic history of those species using only DNA sequence data from independent loci. These methods hold extraordinary promise for increasing the efficiency of species discovery, but require extensive validation to ensure that they are accurate and precise. Whether the species identified by these methods correspond to the species that would be recognized by alternative species recognition criteria (such as measurements of reproductive isolation) is currently an open question, and a subject of vigorous debate. Here we perform an empirical test of these methods by making use of a classic model system in the history of speciation research, flies of the genus Drosophila. Specifically, we use the uniquely comprehensive data on reproductive isolation that is available for this system, along with DNA sequence data, to ask whether Drosophila species inferred under the multispecies coalescent model correspond to those recognized by many decades of speciation research. We found that coalescent based and reproductive isolation based methods of inferring species boundaries are concordant for 77% of the species pairs. We explore and discuss potential explanations for these discrepancies. We also found that the amount of prezygotic isolation between two species is a strong predictor of the posterior probability of species boundaries based on DNA sequence data, regardless of whether the species pairs are sympatrically or allopatrically distributed.


2021 ◽  
Author(s):  
Luz Garcia-Longoria ◽  
Jaime Muriel ◽  
Sergio Magallanes ◽  
Zaira Hellen Villa-Galarce ◽  
Leonila Ricopa ◽  
...  

Abstract Characterizing the diversity and structure of host-parasite communities is crucial to understanding their eco-evolutionary dynamics. Malaria and related haemosporidian parasites are responsible for fitness loss and mortality in bird species worldwide. However, despite exhibiting the greatest ornithological biodiversity, avian haemosporidians from Neotropical regions are quite unexplored. Here, we analyse the genetic diversity of bird haemosporidian parasites (Plasmodium and Haemoproteus) in 1,336 individuals belonging to 206 bird species to explore for differences in diversity of parasite lineages and bird species across five well-differentiated Peruvian ecoregions. We detected 70 different haemosporidian lineages infecting 74 bird species. We showed that 25 out of the 70 haplotypes had not been previously recorded. Moreover, we also identified 81 new host – parasite interactions representing new host records for these haemosporidian parasites. Our outcomes revealed that the effective diversity (as well as the richness, abundance, and Shannon-Weaver index) for both birds and parasite lineages was higher in Amazon basin ecoregions. Furthermore, we also showed that ecoregions with greater diversity of bird species also had high parasite richness, hence suggesting that host community is crucial in explaining parasite richness. Generalist parasites were found in ecoregions with lower bird diversity, implying that the abundance and richness of hosts may shape the exploitation strategy followed by haemosporidian parasites. These outcomes reveal that Neotropical region is a major reservoir of unidentified haemosporidian lineages. Further studies analysing host distribution and specificity of these parasites in the tropics will provide important knowledge about phylogenetic relationships, phylogeography, and patterns of evolution and distribution of haemosporidian parasites.


2012 ◽  
Vol 279 (1742) ◽  
pp. 3520-3526 ◽  
Author(s):  
Brian Tilston Smith ◽  
Amei Amei ◽  
John Klicka

Climatic and geological changes across time are presumed to have shaped the rich biodiversity of tropical regions. However, the impact climatic drying and subsequent tropical rainforest contraction had on speciation has been controversial because of inconsistent palaeoecological and genetic data. Despite the strong interest in examining the role of climatic change on speciation in the Neotropics there has been few comparative studies, particularly, those that include non-rainforest taxa. We used bird species that inhabit humid or dry habitats that dispersed across the Panamanian Isthmus to characterize temporal and spatial patterns of speciation across this barrier. Here, we show that these two assemblages of birds exhibit temporally different speciation time patterns that supports multiple cycles of speciation. Evidence for these cycles is further corroborated by the finding that both assemblages consist of ‘young’ and ‘old’ species, despite dry habitat species pairs being geographically more distant than pairs of humid habitat species. The matrix of humid and dry habitats in the tropics not only allows for the maintenance of high species richness, but additionally this study suggests that these environments may have promoted speciation. We conclude that differentially expanding and contracting distributions of dry and humid habitats was probably an important contributor to speciation in the tropics.


2020 ◽  
Author(s):  
◽  
Alwyn Clark Go

Speciation occurs when reproductive barriers prevent the exchange of genetic information between individuals. A common form of reproductive barrier between species capable of interbreeding is hybrid sterility. Genomic incompatibilities between the divergent genomes of different species contribute to a reduction in hybrid fitness. These incompatibilities continue to accumulate after speciation, therefore, young divergent taxa with incomplete reproductive isolation are important in understating the genetics leading to speciation. Here, I use two Drosophila subspecies pairs. The first is D. willistoni consisting of D. w. willistoni and D. w. winge. The second subspecies pair is D. pseudoobscura, which is composed of D. p. pseudoobscura and D. p. bogotana. Both subspecies pairs are at the early stages of speciation and show incomplete reproductive isolation through unidirectional hybrid male sterility. In this thesis, I performed an exploratory survey of genome-wide expression analysis using RNA-sequencing on D. willistoni and determined the extent of regulatory divergence between the subspecies using allele-specific expression analysis. I found that misexpressed genes showed a degree of tissue specificity and that the sterile male hybrids had a higher proportion of misexpressed genes in the testes relative to the fertile hybrids. The analysis of regulatory divergence between this subspecies pair found a large (66-70%) proportion of genes with conserved regulatory elements. Of the genes showing evidence or regulatory divergence between subspecies, cis-regulatory divergence was more common than other types. In the D. pseudoobscura subspecies pair, I compared sequence and expression divergence and found no support for directional selection driving gene misexpression in their hybrids. Allele-specific expression analysis revealed that compensatory cis-trans mutations partly explained gene misexpression in the hybrids. The remaining hybrid misexpression occurs due to interacting gene networks or possible co-option of cis-regulatory elements by divergent transacting factors. Overall, the results of this thesis highlight the role of regulatory interactions in a hybrid genome and how these interactions could lead to hybrid breakdown by disrupting gene interaction networks.


Sign in / Sign up

Export Citation Format

Share Document