scholarly journals Predaceous Toxorhynchites mosquitoes require a living gut microbiota to develop

2020 ◽  
Vol 287 (1919) ◽  
pp. 20192705 ◽  
Author(s):  
Kerri L. Coon ◽  
Luca Valzania ◽  
Mark R. Brown ◽  
Michael R. Strand

Most species of mosquitoes are detritivores that feed on decaying plant and animal materials in their aquatic environment. Studies of several detritivorous mosquito species indicate that they host relatively low diversity communities of microbes that are acquired from the environment while feeding. Our recent results also indicate that detritivorous species normally require a living gut microbiota to grow beyond the first instar. Less well known is that some mosquitoes, including those belonging to the genus Toxorhynchites , are predators that feed on other species of mosquitoes and nektonic prey. In this study, we asked whether predaceous Toxorhynchites amboinensis larvae still require living microbes in their gut in order to develop. Using the detritivorous mosquito Aedes aegypti as prey, we found that T. amboinensis larvae harbour bacterial communities that are highly similar to that of their prey. Functional assays showed that T. amboinensis first instars provided axenic (i.e. bacteria-free) prey failed to develop, while two bacterial species present in gnotobiotic (i.e. colonized by one or more known bacterial species) prey successfully colonized the T. amboinensis gut and rescued development. Axenic T. amboinensis larvae also displayed defects in growth consistent with previously identified roles for microbe-mediated gut hypoxia in nutrient acquisition and assimilation in A. aegypti. Collectively, these results support a conserved role for gut microbes in regulating the development of mosquitoes with different feeding strategies.

Author(s):  
Xun Kang ◽  
Yanhong Wang ◽  
Siping Li ◽  
Xiaomei Sun ◽  
Xiangyang Lu ◽  
...  

The midgut microbial community composition, structure, and function of field-collected mosquitoes may provide a way to exploit microbial function for mosquito-borne disease control. However, it is unclear how adult mosquitoes acquire their microbiome, how the microbiome affects life history traits and how the microbiome influences community structure. We analyzed the composition of 501 midgut bacterial communities from field-collected adult female mosquitoes, including Aedes albopictus, Aedes galloisi, Culex pallidothorax, Culex pipiens, Culex gelidus, and Armigeres subalbatus, across eight habitats using the HiSeq 4000 system and the V3−V4 hyper-variable region of 16S rRNA gene. After quality filtering and rarefaction, a total of 1421 operational taxonomic units, belonging to 29 phyla, 44 families, and 43 genera were identified. Proteobacteria (75.67%) were the most common phylum, followed by Firmicutes (10.38%), Bacteroidetes (6.87%), Thermi (4.60%), and Actinobacteria (1.58%). The genera Rickettsiaceae (33.00%), Enterobacteriaceae (20.27%), Enterococcaceae (7.49%), Aeromonadaceae (7.00%), Thermaceae (4.52%), and Moraxellaceae (4.31%) were dominant in the samples analyzed and accounted for 76.59% of the total genera. We characterized the midgut bacterial communities of six mosquito species in Hainan province, China. The gut bacterial communities were different in composition and abundance, among locations, for all mosquito species. There were significant differences in the gut microbial composition between some species and substantial variation in the gut microbiota between individuals of the same mosquito species. There was a marked variation in different mosquito gut microbiota within the same location. These results might be useful in the identification of microbial communities that could be exploited for disease control.


2021 ◽  
Author(s):  
Artur Trzebny ◽  
Anna Slodkowicz-Kowalska ◽  
Johanna Björkroth ◽  
Miroslawa Dabert

AbstractThe animal gut microbiota consist of many different microorganisms, mainly bacteria, but archaea, fungi, protozoans, and viruses may also be present. This complex and dynamic community of microorganisms may change during parasitic infection. In the present study, we investigated the effect of the presence of microsporidians on the composition of the mosquito gut microbiota and linked some microbiome taxa and functionalities to infections caused by these parasites. We characterised bacterial communities of 188 mosquito females, of which 108 were positive for microsporidian DNA. To assess how bacterial communities change during microsporidian infection, microbiome structures were identified using 16S rRNA microbial profiling. In total, we identified 46 families and four higher taxa, of which Comamonadaceae, Enterobacteriaceae, Flavobacteriaceae and Pseudomonadaceae were the most abundant mosquito-associated bacterial families. Our data suggest that the mosquito gut microbial composition varies among host species. In addition, we found a correlation between the microbiome composition and the presence of microsporidians. The prediction of metagenome functional content from the 16S rRNA gene sequencing suggests that microsporidian infection is characterised by some bacterial species capable of specific metabolic functions, especially the biosynthesis of ansamycins and vancomycin antibiotics and the pentose phosphate pathway. Moreover, we detected a positive correlation between the presence of microsporidian DNA and bacteria belonging to Spiroplasmataceae and Leuconostocaceae, each represented by a single species, Spiroplasma sp. PL03 and Weissella cf. viridescens, respectively. Additionally, W. cf. viridescens was observed only in microsporidian-infected mosquitoes. More extensive research, including intensive and varied host sampling, as well as determination of metabolic activities based on quantitative methods, should be carried out to confirm our results.


2020 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Erik Neff ◽  
Amie Geary ◽  
Montana Ciara Husser ◽  
Kevin Wilson ◽  
...  

Abstract Background: The ability of blood feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered with, or enhanced by, the arthropod’s native microbiome. Mosquitoes transmit viruses, protozoan and filarial nematodes, the majority of which contribute to the 17% of infectious disease cases worldwide. Dirofilaria immitis , a mosquito transmitted by filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti . Methods: In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female A. aegypti . Metagenomic analysis of the V3-V4 variable region of the microbial 16SRNA was used for identification of the microbial differences down to species level. Results We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes, suggesting a possible endosymbiotic relationship, and has been previously shown to indirectly compete for nutrients with fungi on domestic housefly eggs and larva. While D. immitis colonization has no effect on the overall species richness, we identified significant differences in the composition of selected bacteria genus and phylum between the two groups. We also reported distinct compositional and phylogenetic differences in the individual bacteria species when commonly identified bacteria were compared. Conclusions In conclusion, this is the first study to the best of our knowledge to understand the impact of a filarial infection on the microbiome of its mosquito vector. Further studies are required to identify bacteria species that could play an important role in the mosquito biology. While the microbiome composition of A. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.


2020 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Erik Neff ◽  
Amie Geary ◽  
Montana Ciara Husser ◽  
Kevin Wilson ◽  
...  

Abstract Background: The ability of blood-feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered with, or enhanced by, the arthropod’s native microbiome. Mosquitoes transmit viruses, protozoan and filarial nematodes, the majority of which contribute to the 17% of infectious disease cases worldwide. Dirofilaria immitis, a mosquito-transmitted filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti.Methods: In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female Ae. aegypti. Metagenomic analysis of the V3-V4 variable region of the microbial 16S RNA gene was used for identification of the microbial differences down to species level.Results: We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis-infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes, suggesting a possible endosymbiotic relationship, and has been previously shown to indirectly compete for nutrients with fungi on domestic housefly eggs and larvae. While D. immitis colonization has no effect on the overall species richness, we identified significant differences in the composition of selected bacterial genera and phyla between the two groups. We also reported distinct compositional and phylogenetic differences in the individual bacterial species when commonly identified bacteria were compared.Conclusions: In conclusion, this is the first study to the best of our knowledge, this is the first study to understand the impact of a filarial infection on the microbiome of its mosquito vector. Further studies are required to identify bacteria species that could play an important role in the mosquito biology. While the microbiome composition of Ae. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.


2020 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Erik Neff ◽  
Amie Geary ◽  
Montana Ciara Husser ◽  
Kevin Wilson ◽  
...  

Abstract Background: The ability of blood feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered or enhanced by the arthropod’s native microbiome. Mosquitoes transmit bacteria, viruses, protozoan and filarial nematodes, majority of which contributes to the 17% of infectious disease cases worldwide. Dirofilaria immitis, a mosquito transmitted filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti.Methods: In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female A. aegypti. Metagenomic analysis of the V3-V4 variable region of the microbial 16SRNA was used for identification of the microbial differences down to species level.Results: We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes, suggesting a possible endosymbiotic relationship. It has been previously shown to indirectly compete for nutrients with fungi on the domestic housefly eggs and larva. While D. immitis colonization has no effect on the overall species richness, we identified significant differences in the composition of selected bacteria genus and phylum between the two groups. We also reported distinct compositional and phylogenetic differences in the individual bacteria species when commonly identified bacteria were compared.Conclusions: In conclusion, this is the first study to the best of our knowledge to understand the impact of a filarial infection on the microbiome of its mosquito vector. Further studies is required to identify bacteria species that could play an important role in the mosquito biology. While the microbiome composition of A. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.


2020 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Erik Neff ◽  
Amie Geary ◽  
Montana Ciara Husser ◽  
Kevin Wilson ◽  
...  

Abstract Background: The ability of blood feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered or enhanced by the arthropod’s native microbiome. Mosquitoes transmit bacteria, viruses, protozoan and filarial nematodes, majority of which contributes to the 17% of infectious disease cases worldwide. Dirofilaria immitis, a mosquito transmitted filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti.Methods: In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female A. aegypti. Metagenomic analysis of the V3-V4 variable region of the microbial 16SRNA was used for identification of the microbial differences down to species level.Results: We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes. It has been previously shown to indirectly compete for nutrients with fungi on the domestic housefly eggs and larva. While not statistically significant, D. immitis infection alters bacterial diversity by reducing the bacterial species richness and abundance.Conclusions: In conclusion, this is the first study to the best of our knowledge to understand the impact of a filarial infection on the microbiome of its mosquito vector. While the microbiome composition of A. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.


2020 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Erik Neff ◽  
Amie Geary ◽  
Montana Ciara Husser ◽  
Kevin Wilson ◽  
...  

Abstract Background: The ability of blood feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered with, or enhanced by, the arthropod’s native microbiome. Mosquitoes transmit viruses, protozoan and filarial nematodes, the majority of which contribute to the 17% of infectious disease cases worldwide. Dirofilaria immitis, a mosquito transmitted by filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti.Methods: In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female A. aegypti. Metagenomic analysis of the V3-V4 variable region of the microbial 16SRNA was used for identification of the microbial differences down to species level.Results We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes, suggesting a possible endosymbiotic relationship, and has been previously shown to indirectly compete for nutrients with fungi on domestic housefly eggs and larva. While D. immitis colonization has no effect on the overall species richness, we identified significant differences in the composition of selected bacteria genus and phylum between the two groups. We also reported distinct compositional and phylogenetic differences in the individual bacteria species when commonly identified bacteria were compared. Conclusions In conclusion, this is the first study to the best of our knowledge to understand the impact of a filarial infection on the microbiome of its mosquito vector. Further studies are required to identify bacteria species that could play an important role in the mosquito biology. While the microbiome composition of A. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.


2020 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Erik Neff ◽  
Amie Geary ◽  
Montana Ciara Husser ◽  
Kevin Wilson ◽  
...  

Abstract Background: The ability of blood-feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered with, or enhanced by, the arthropod’s native microbiome. Mosquitoes transmit viruses, protozoan and filarial nematodes, the majority of which contribute to the 17% of infectious disease cases worldwide. Dirofilaria immitis, a mosquito-transmitted filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti.Methods: In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female Ae. aegypti. Metagenomic analysis of the V3-V4 variable region of the microbial 16S RNA gene was used for identification of the microbial differences down to species level.Results: We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis-infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes, suggesting a possible endosymbiotic relationship, and has been previously shown to indirectly compete for nutrients with fungi on domestic housefly eggs and larvae. While D. immitis colonization has no effect on the overall species richness, we identified significant differences in the composition of selected bacterial genera and phyla between the two groups. We also reported distinct compositional and phylogenetic differences in the individual bacterial species when commonly identified bacteria were compared.Conclusions: To the best of our knowledge, this is the first study to understand the impact of a filarial infection on the microbiome of its mosquito vector. Further studies are required to identify bacteria species that could play an important role in the mosquito biology. While the microbiome composition of Ae. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.


2018 ◽  
Author(s):  
Inês S. Pais ◽  
Rita S. Valente ◽  
Marta Sporniak ◽  
Luis Teixeira

AbstractAnimals live together with diverse bacteria that can impact their biology. InDrosophila melanogaster, gut-associated bacterial communities are relatively simple in composition but also have a strong impact on host development and physiology. However, it is still unknown if bacteria can proliferate and stably associate with the gut ofD. melanogaster. In fact, it is generally assumed that bacteria are transient and their constant ingestion with food is required to maintain their presence in the gut. Here, we identify bacterial species from wild-caughtD. melanogasterthat stably associate with the host independently of continuous inoculation. Moreover, we show that specificAcetobacterwild isolates can proliferate in the gut. We further demonstrate that the interaction betweenD. melanogasterand the wild isolatedAcetobacter thailandicusis mutually beneficial and that the stability of the gut association is key to this mutualism. The stable population in the gut ofD. melanogasterallows continuous bacterial spreading into the environment, which is advantageous to the bacterium itself. The bacterial dissemination is in turn advantageous to the host since the next generation of flies develops in the presence of this particularly beneficial bacterium.Ac. thailandicusleads to a faster host development and higher fertility of emerging adults, when compared to other bacteria isolated from wild-caught flies. Furthermore,Ac. thailandicusis sufficient and advantageous whenD. melanogasterdevelops in axenic or freshly collected figs, respectively. This isolate ofAc. thailandicuscolonizes several genotypes ofD. melanogasterbut not of the closely relatedDrosophila simulans, indicating that the stable association is host specific. This work establishes a new conceptual model to understandD. melanogaster- gut microbiota interactions in an ecological context; stable interactions can be mutualistic through microbial farming, a common strategy in insects. Moreover, these results develop the use ofD. melanogasteras a model to study gut microbiota proliferation and colonization.Author summaryAnimals, including humans, live together with complex bacterial communities in their gut that influence their physiology and health. The fruit flyDrosophila melanogasterhas been an excellent model organism to study host-microbe interactions and harbours a relative simple gut bacterial community. However, it is not known which of these bacteria can proliferate and form stable communities in the gut, and the current hypothesis is that these bacteria are only transiently associated with the gut. Here, we show that inD. melanogastercollected from a natural population stable gut bacteria do exist. We isolated specific species that can proliferate in the gut and form a stable association. This is beneficial to the bacteria since they can be constantly spread by the flies as they move around. On the other hand, this is a form of farming as the next generation of flies benefit from the association with these particular bacteria during development. They become adults faster and are more fertile than if they develop with other bacteria encountered in nature. These advantages are also observed when flies develop in figs, a natural food source. Our findings show thatD. melanogasterhas stable colonizing bacteria in the gut and establish a new framework to study host-gut bacteria interactions.


Sign in / Sign up

Export Citation Format

Share Document