Ecosystem function after the K/Pg extinction: decoupling of marine carbon pump and diversity

2021 ◽  
Vol 288 (1953) ◽  
pp. 20210863
Author(s):  
Heather Birch ◽  
Daniela N. Schmidt ◽  
Helen K. Coxall ◽  
Dick Kroon ◽  
Andy Ridgwell

The ocean biological pump is the mechanism by which carbon and nutrients are transported to depth. As such, the biological pump is critical in the partitioning of carbon dioxide between the ocean and atmosphere, and the rate at which that carbon can be sequestered through burial in marine sediments. How the structure and function of planktic ecosystems in the ocean govern the strength and efficiency of the biological pump and its resilience to disruption are poorly understood. The aftermath of the impact at the Cretaceous/Palaeogene (K/Pg) boundary provides an ideal opportunity to address these questions as both the biological pump and marine plankton size and diversity were fundamentally disrupted. The excellent fossil record of planktic foraminifera as indicators of pelagic-biotic recovery combined with carbon isotope records tracing biological pump behaviour, show that the recovery of ecological traits (diversity, size and photosymbiosis) occurred much later (approx. 4.3 Ma) than biological pump recovery (approx. 1.8 Ma). We interpret this decoupling of diversity and the biological pump as an indication that ecosystem function had sufficiently recovered to drive an effective biological pump, at least regionally in the South Atlantic.

2011 ◽  
Vol 21 (3) ◽  
pp. 112-117 ◽  
Author(s):  
Elizabeth Erickson-Levendoski ◽  
Mahalakshmi Sivasankar

The epithelium plays a critical role in the maintenance of laryngeal health. This is evident in that laryngeal disease may result when the integrity of the epithelium is compromised by insults such as laryngopharyngeal reflux. In this article, we will review the structure and function of the laryngeal epithelium and summarize the impact of laryngopharyngeal reflux on the epithelium. Research investigating the ramifications of reflux on the epithelium has improved our understanding of laryngeal disease associated with laryngopharyngeal reflux. It further highlights the need for continued research on the laryngeal epithelium in health and disease.


Author(s):  
Karen J. Esler ◽  
Anna L. Jacobsen ◽  
R. Brandon Pratt

Ecosystems are assemblages of organisms interacting with one another and their environment (Chapter 1). Key to the functioning of ecosystems is the flow of energy, carbon, mineral nutrients, and water in these systems. The numerous processes involved are chiefly driven by climate, soil, and fire (Chapter 2). In cases where the key drivers are the same in different areas, then ecosystems should converge in their structure and function, which has been a motivation for comparing across mediterranean-type climate (MTC) regions. Convergence of MTC regions has been evaluated, but such comparisons at the ecosystem level are challenging because ecosystems are complex and dynamic entities. Here we review carbon, nutrient, and water dynamics of mediterranean-type ecosystems in the context of ecosystem function. As nutrients in soils are low in some MTC regions, we review how this has led to unique adaptations to meet this challenge.


2021 ◽  
Vol XXXVII (1) ◽  
pp. 89-100
Author(s):  
Dorota Kondej

This paper presents basic information on a structure and function of biological membranes. Types of biomimetic membranes modelling properties of biological membranes were introduced. The method of testing surface properties of a lipid monolayer, which is the basic type of biomimetic membranes, was described. The presented method makes it possible to evaluate the effect of nanoparticles on the surface activity of biomimetic membranes based on the determination of the surface index MA. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.


2016 ◽  
Vol 14 (1) ◽  
pp. nrs.14002 ◽  
Author(s):  
Shailaja D. Divekar ◽  
Deanna M. Tiek ◽  
Aileen Fernandez ◽  
Rebecca B. Riggins

Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα (ESRRA) and ERRγ (ESRRG) at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ (ESRRB), however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor.


2013 ◽  
Vol 448-453 ◽  
pp. 529-531
Author(s):  
Jing Bo Zhao ◽  
Li Bo Hao

Analysis of the causes of dust brick and tile production enterprises, from the impact on human health, the factory machinery and equipment wear, impact on environment protection, expounds the harmfulness of dust, and discusses the type, structure and function of the filter, as well as the precipitator combined use method and way to control dust.


2018 ◽  
Vol 285 (1890) ◽  
pp. 20181717 ◽  
Author(s):  
Denon Start ◽  
Stephen De Lisle

Intraspecific variation can have important consequences for the structure and function of ecological communities, and serves to link community ecology to evolutionary processes. Differences between the sexes are an overwhelmingly common form of intraspecific variation, but its community-level consequences have never been experimentally investigated. Here, we manipulate the sex ratio of a sexually dimorphic predacious newt in aquatic mesocosms, then track their impact on prey communities. Female and male newts preferentially forage in the benthic and pelagic zones, respectively, causing corresponding reductions in prey abundances in those habitats. Sex ratio differences also explained a large proportion (33%) of differences in the composition of entire pond communities. Ultimately, we demonstrate the impact of known patterns of sexual dimorphism in a predator on its prey, uncovering overlooked links between evolutionary adaptation and the structure of contemporary communities. Given the extreme prevalence of sexual dimorphism, we argue that the independent evolution of the sexes will often have important consequences for ecological communities.


Amino Acids ◽  
2019 ◽  
Vol 51 (10-12) ◽  
pp. 1409-1431 ◽  
Author(s):  
Luigi Grassi ◽  
Chiara Cabrele

Abstract Peptides and proteins are preponderantly emerging in the drug market, as shown by the increasing number of biopharmaceutics already approved or under development. Biomolecules like recombinant monoclonal antibodies have high therapeutic efficacy and offer a valuable alternative to small-molecule drugs. However, due to their complex three-dimensional structure and the presence of many functional groups, the occurrence of spontaneous conformational and chemical changes is much higher for peptides and proteins than for small molecules. The characterization of biotherapeutics with modern and sophisticated analytical methods has revealed the presence of contaminants that mainly arise from oxidation- and elimination-prone amino-acid side chains. This review focuses on protein chemical modifications that may take place during storage due to (1) oxidation (methionine, cysteine, histidine, tyrosine, tryptophan, and phenylalanine), (2) intra- and inter-residue cyclization (aspartic and glutamic acid, asparagine, glutamine, N-terminal dipeptidyl motifs), and (3) β-elimination (serine, threonine, cysteine, cystine) reactions. It also includes some examples of the impact of such modifications on protein structure and function.


2020 ◽  
Vol 6 (28) ◽  
pp. eabb8930 ◽  
Author(s):  
Catherine V. Davis ◽  
Caitlin M. Livsey ◽  
Hannah M. Palmer ◽  
Pincelli M. Hull ◽  
Ellen Thomas ◽  
...  

Marine protists are integral to the structure and function of pelagic ecosystems and marine carbon cycling, with rhizarian biomass alone accounting for more than half of all mesozooplankton in the oligotrophic oceans. Yet, understanding how their environment shapes diversity within species and across taxa is limited by a paucity of observations of heritability and life history. Here, we present observations of asexual reproduction, morphologic plasticity, and ontogeny in the planktic foraminifer Neogloboquadrina pachyderma in laboratory culture. Our results demonstrate that planktic foraminifera reproduce both sexually and asexually and demonstrate extensive phenotypic plasticity in response to nonheritable factors. These two processes fundamentally explain the rapid spatial and temporal response of even imperceptibly low populations of planktic foraminifera to optimal conditions and the diversity and ubiquity of these species across the range of environmental conditions that occur in the ocean.


Sign in / Sign up

Export Citation Format

Share Document