The crystallographic point groups as semi-direct products

This paper aims at providing a systematic treatment of the crystallographic point groups. Some well-known properties of them, in terms of the theory of the poles of finite rotations, are first discussed, so as to provide a simple way for recognizing their invariant subgroups. A definition of the semi-direct product is then given, and it is shown that all crystallographic point groups can be expressed as a semi-direct product of one of their invariant subgroups by a cyclic subgroup. Many useful relations between point groups can be obtained by exploiting the properties of the triple and mixed triple semi-direct products, which are defined. Much of the rest of the paper is devoted to the theory of the representations of semi-direct products. The treatment here parallels that given by Seitz (1936) for the reduction of space groups in terms of the representations of its invariant subgroups (the translation groups). The latter, however, are always Abelian and this is not always the case for point groups. The full treatment of the general case, such as given by McIntosh (1958), is laborious and it is shown that, if the emphasis is placed on the bases of the representations, rather than the representations themselves, it is possible to achieve the reduction of the point groups by a method hardly more involved than that required when the invariant subgroup is Abelian. It is also shown that, just as for space groups, the representations of the invariant subgroups can be denoted and visualized by means of a vector, which allows a very rapid classification of the representations, very much as the k vector as used by Bouckaert, Smoluchowski & Wigner (1936) allows the formalism of the Seitz method for space groups to be carried out in a graphical fashion. One of the major consequences of this work is that it affords a substantial simplification in the use of the symmetrizing and projection operators that are required to obtain symmetry-adapted functions: a very systematic alternative to the method given by Melvin (1956) is therefore provided. In the last section of the paper all the techniques discussed are applied in detail, as an example, to the cubic groups. The projection operators are used to obtain symmetry-adapted spherical harmonics for these groups. The paper might be found useful as an introduction to the methods for the reduction of space groups.

Author(s):  
Gregory S. Chirikjian ◽  
Kushan Ratnayake ◽  
Sajdeh Sajjadi

AbstractPoint groups consist of rotations, reflections, and roto-reflections and are foundational in crystallography. Symmorphic space groups are those that can be decomposed as a semi-direct product of pure translations and pure point subgroups. In contrast, Bieberbach groups consist of pure translations, screws, and glides. These “torsion-free” space groups are rarely mentioned as being a special class outside of the mathematics literature. Every space group can be thought of as lying along a spectrum with the symmorphic case at one extreme and Bieberbach space groups at the other. The remaining nonsymmorphic space groups lie somewhere in between. Many of these can be decomposed into semi-direct products of Bieberbach subgroups and point transformations. In particular, we show that those 3D Sohncke space groups most populated by macromolecular crystals obey such decompositions. We tabulate these decompositions for those Sohncke groups that admit such decompositions. This has implications to the study of packing arrangements in macromolecular crystals. We also observe that every Sohncke group can be written as a product of Bieberbach and symmorphic subgroups, and this has implications for new nomenclature for space groups.


1978 ◽  
Vol 34 (6) ◽  
pp. 895-900
Author(s):  
J. Sivardière

Let G be a finite group, H an invariant subgroup and F the corresponding factor group. The classes of conjugated elements of G are derived from the classes of H and F. We consider simple point groups and symmorphic space groups, which are semi-direct products H^F, then double point groups and non- symmorphic space groups, which are extensions of F by H.


2020 ◽  
Vol 30 (06) ◽  
pp. 1257-1304
Author(s):  
Luiz Gustavo Cordeiro

In this paper, we use semigroupoids to describe a notion of algebraic bundles, mostly motivated by Fell ([Formula: see text]-algebraic) bundles, and the sectional algebras associated to them. As the main motivational example, Steinberg algebras may be regarded as the sectional algebras of trivial (direct product) bundles. Several theorems which relate geometric and algebraic constructions — via the construction of a sectional algebra — are widely generalized: Direct products bundles by semigroupoids correspond to tensor products of algebras; semidirect products of bundles correspond to “naïve” crossed products of algebras; skew products of graded bundles correspond to smash products of graded algebras; Quotient bundles correspond to quotient algebras. Moreover, most of the results hold in the non-Hausdorff setting. In the course of this work, we generalize the definition of smash products to groupoid graded algebras. As an application, we prove that whenever [Formula: see text] is a ∧-preaction of a discrete inverse semigroupoid [Formula: see text] on an ample (possibly non-Hausdorff) groupoid [Formula: see text], the Steinberg algebra of the associated groupoid of germs is naturally isomorphic to a crossed product of the Steinberg algebra of [Formula: see text] by [Formula: see text]. This is a far-reaching generalization of analogous results which had been proven in particular cases.


1972 ◽  
Vol 37 (1) ◽  
pp. 75-80 ◽  
Author(s):  
Philip Olin

First order properties of direct products and direct sums (weak direct products) of relational systems have been studied extensively. For example, in Feferman and Vaught [3] an effective procedure is given for reducing such properties of the product to properties of the factors, and thus in particular elementary equivalence is preserved. We consider here two-sorted relational systems, with the direct product and sum operations keeping one of the sorts stationary. (See Feferman [4] for a similar definition of extensions.)These considerations are motivated by the example of direct products and sums of modules [8], [9]. In [9] examples are given to show that the direct product of two modules (even having only a finite number of module elements) does not preserve two-sorted (even universal) equivalence for any finite or infinitary language Lκ, λ. So we restrict attention here to direct powers and multiples (many copies of one structure). Also in [9] it is shown (for modules, but the proofs generalize immediately to two-sorted structures with a finite number of relations) that the direct multiple operation preserves first order ∀E-equivalence and the direct power operation preserves first order ∀-equivalence. We show here that these results for general two-sorted structures in a finite first order language are, in a sense, best-possible. Examples are given to show that does not imply , and that does not imply .


1969 ◽  
Vol 65 (2) ◽  
pp. 567-578 ◽  
Author(s):  
Arthur P. Cracknell

AbstractBasis functions are derived and tabulated for the double-valued representations of the triclinic, monoclinic, orthorhombic, trigonal, tetragonal and hexagonal crystallographic point groups using the method of projection operators.


1996 ◽  
Vol 35 (04/05) ◽  
pp. 334-342 ◽  
Author(s):  
K.-P. Adlassnig ◽  
G. Kolarz ◽  
H. Leitich

Abstract:In 1987, the American Rheumatism Association issued a set of criteria for the classification of rheumatoid arthritis (RA) to provide a uniform definition of RA patients. Fuzzy set theory and fuzzy logic were used to transform this set of criteria into a diagnostic tool that offers diagnoses at different levels of confidence: a definite level, which was consistent with the original criteria definition, as well as several possible and superdefinite levels. Two fuzzy models and a reference model which provided results at a definite level only were applied to 292 clinical cases from a hospital for rheumatic diseases. At the definite level, all models yielded a sensitivity rate of 72.6% and a specificity rate of 87.0%. Sensitivity and specificity rates at the possible levels ranged from 73.3% to 85.6% and from 83.6% to 87.0%. At the superdefinite levels, sensitivity rates ranged from 39.0% to 63.7% and specificity rates from 90.4% to 95.2%. Fuzzy techniques were helpful to add flexibility to preexisting diagnostic criteria in order to obtain diagnoses at the desired level of confidence.


2018 ◽  
pp. 4-7
Author(s):  
S. I. Zenko

The article raises the problem of classification of the concepts of computer science and informatics studied at secondary school. The efficiency of creation of techniques of training of pupils in these concepts depends on its solution. The author proposes to consider classifications of the concepts of school informatics from four positions: on the cross-subject basis, the content lines of the educational subject "Informatics", the logical and structural interrelations and interactions of the studied concepts, the etymology of foreign-language and translated words in the definition of the concepts of informatics. As a result of the first classification general and special concepts are allocated; the second classification — inter-content and intra-content concepts; the third classification — stable (steady), expanding, key and auxiliary concepts; the fourth classification — concepts-nouns, conceptsverbs, concepts-adjectives and concepts — combinations of parts of speech.


2020 ◽  
Vol 13 (1) ◽  
pp. 71-84
Author(s):  
E.A. Grigor'eva ◽  
A.S. Buzhikeeva

Subject. This article deals with the issues of determining the market value of the trading business, taking into account a number of characteristics. Objectives. The article aims to develop certain provisions of the methodology and practice of evaluating the business of trading organizations, namely, taking into account the additional risk of inventory feasibility when calculating the discount rate. Methods. For the study, we used a systems approach, and the cognition, and economic and analytical research methods. Results. The article presents a three-tiered classification of stocks and a definition of risk based on the criteria for dividing stocks by purpose, degree of implementation, and shelf life in accordance with the scale. Based on the classification, the article offers certain recommendations for determining the discount rate when evaluating trading organizations, aimed at taking into account additional risk. Conclusions. Various evaluation procedures within the framework of traditional approaches and methods in relation to trading organizations do not take into account risk specific to this type of economic activity. The proposed methodology for calculating the discount rate for trade organizations takes into account the features of their functioning.


Sign in / Sign up

Export Citation Format

Share Document