A Discussion on recent advances in heavy electrical plant - A.c.—d.c. converter plant

An ‘ideal* converter would accept the power flow of a 3-phase a.c. system operating with sinusoidal voltage and current, and, without energy storage and by a continuous process, convert to or from d.c. Present-day converters rely, however, on repetitive circuit switching operations, more than 12 per cycle being generally uneconomic despite the cost of the energy storage components required in damping circuits and in the filters to maintain acceptable waveforms. Analysis of the operation of such converters is based on the mathematics of repetitive transients (Laplace and Fourier) and on the use of a d.c. transmission simulator, an extensive model at 10 -7 scale in power, which is also necessary in the development of complex electronic control circuits. There exists a great background of experience contributing to the design of most components of the power circuit. In contrast, the development of the switching device, whether thyristor stack or mercury arc valve, calls for advances in the state of art, both in scientific appreciation and in technology, which must be supported by full scale tests. There is little immediate prospect of the theoretical ‘ ideal * converter, but this is unimportant, provided that development leads to enhanced overall reliability.

2021 ◽  
Vol 13 (10) ◽  
pp. 5752
Author(s):  
Reza Sabzehgar ◽  
Diba Zia Amirhosseini ◽  
Saeed D. Manshadi ◽  
Poria Fajri

This work aims to minimize the cost of installing renewable energy resources (photovoltaic systems) as well as energy storage systems (batteries), in addition to the cost of operation over a period of 20 years, which will include the cost of operating the power grid and the charging and discharging of the batteries. To this end, we propose a long-term planning optimization and expansion framework for a smart distribution network. A second order cone programming (SOCP) algorithm is utilized in this work to model the power flow equations. The minimization is computed in accordance to the years (y), seasons (s), days of the week (d), time of the day (t), and different scenarios based on the usage of energy and its production (c). An IEEE 33-bus balanced distribution test bench is utilized to evaluate the performance, effectiveness, and reliability of the proposed optimization and forecasting model. The numerical studies are conducted on two of the highest performing batteries in the current market, i.e., Lithium-ion (Li-ion) and redox flow batteries (RFBs). In addition, the pros and cons of distributed Li-ion batteries are compared with centralized RFBs. The results are presented to showcase the economic profits of utilizing these battery technologies.


2020 ◽  
Vol 12 (12) ◽  
pp. 31-43
Author(s):  
Tatiana A. VASKOVSKAYA ◽  
◽  
Boris A. KLUS ◽  

The development of energy storage systems allows us to consider their usage for load profile leveling during operational planning on electricity markets. The paper proposes and analyses an application of an energy storage model to the electricity market in Russia with the focus on the day ahead market. We consider bidding, energy storage constraints for an optimal power flow problem, and locational marginal pricing. We show that the largest effect for the market and for the energy storage system would be gained by integration of the energy storage model into the market’s optimization models. The proposed theory has been tested on the optimal power flow model of the day ahead market in Russia of 10000-node Unified Energy System. It is shown that energy storage systems are in demand with a wide range of efficiencies and cycle costs.


RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5432-5443
Author(s):  
Shyam K. Pahari ◽  
Tugba Ceren Gokoglan ◽  
Benjoe Rey B. Visayas ◽  
Jennifer Woehl ◽  
James A. Golen ◽  
...  

With the cost of renewable energy near parity with fossil fuels, energy storage is paramount. We report a breakthrough on a bioinspired NRFB active-material, with greatly improved solubility, and place it in a predictive theoretical framework.


2019 ◽  
Vol 137 ◽  
pp. 01007 ◽  
Author(s):  
Sebastian Lepszy

Due to the random nature of the production, the use of renewable energy sources requires the use of technologies that allow adjustment of electricity production to demand. One of the ways that enable this task is the use of energy storage systems. The article focuses on the analysis of the cost-effectiveness of energy storage from the grid. In particular, the technology was evaluated using underground hydrogen storage generated in electrolysers. Economic analyzes use historical data from the Polish energy market. The obtained results illustrate, among other things, the proportions between the main technology modules selected optimally in technical and economic terms.


2012 ◽  
Vol 529 ◽  
pp. 371-375
Author(s):  
Lu Yao Ma ◽  
Shu Jun Yao ◽  
Yan Wang ◽  
Jing Yang ◽  
Long Hui Liu

With the distributed generation such as photovoltaic power system (PVS) is largely introduced into power grid, some significant problems such as system instability problem increase seriously. In order to make full use of PVS and make sure the voltage exceeding probability is limited within a certain range to ensure the power quality, as well as consider the cost of access device, the suitable PVS access node and capacity is important. Based on this problem, this paper establishes the probabilistic power flow model of PVS by introducing the combined Cumulants and the Gram-Charlier expansion method. Also, to solve the nonlinear combinatorial optimization problem, this paper uses PSO algorithm. Finally to get the suitable PVS access node and capacity, also calculate the solution of voltage exceeding probability.


Sign in / Sign up

Export Citation Format

Share Document