scholarly journals Atmosphere–ocean dynamics in the Western Indian Ocean recorded in corals

Author(s):  
J. Zinke ◽  
M. Pfeiffer ◽  
O. Timm ◽  
W.–C. Dullo ◽  
G. R. Davies

We present a set of Porites coral oxygen isotope records from the tropical and subtropical Western Indian Ocean covering the past 120–336 years. All records were thoroughly validated for proxy response to regional climate factors and their relation to large–scale climate modes. The records show markedly different imprints of regional climate factors. At the same time, all coral records show clear teleconnections between the Western Indian Ocean and the El Niño–Southern Oscillation (ENSO). The multi–proxy site analysis enables the detection of the covariance structure between individual records and climate modes such as ENSO. This method unravels shifts in ENSO teleconnectivity of the Western and Central Indian Ocean on multi–decadal time–scales (after 1976). The Seychelles record shows a stationary correlation with ENSO, Chagos corals show evidence for non–stationary d 18 O/ENSO relationships and the Southwestern Indian Ocean corals show a strong relationship with ENSO when the forcing is strong (1880–1920, 1970 to present). Our results indicate that the coral δ 18 O, in combination with other proxies, can be used to monitor temporal and spatial variations in the sea–surface temperature and the fresh water balance within the Indian Ocean on interannual to interdecadal time–scales.

2017 ◽  
Vol 30 (9) ◽  
pp. 3197-3217 ◽  
Author(s):  
Jie He ◽  
Clara Deser ◽  
Brian J. Soden

The intrinsic atmospheric and ocean-induced tropical precipitation variability is studied using millennial control simulations with various degrees of ocean coupling. A comparison between the coupled simulation and the atmosphere-only simulation with climatological sea surface temperatures (SSTs) shows that a substantial amount of tropical precipitation variability is generated without oceanic influence. This intrinsic atmospheric variability features a red noise spectrum from daily to monthly time scales and a white noise spectrum beyond the monthly time scale. The oceanic impact is inappreciable for submonthly time scales but important at interannual and longer time scales. For time scales longer than a year, it enhances precipitation variability throughout much of the tropical oceans and suppresses it in some subtropical areas, preferentially in the summer hemisphere. The sign of the ocean-induced precipitation variability can be inferred from the local precipitation–SST relationship, which largely reflects the local feedbacks between the two, although nonlocal forcing associated with El Niño–Southern Oscillation also plays a role. The thermodynamic and dynamic nature of the ocean-induced precipitation variability is studied by comparing the fully coupled and slab ocean simulations. For time scales longer than a year, equatorial precipitation variability is almost entirely driven by ocean circulation, except in the Atlantic Ocean. In the rest of the tropics, ocean-induced precipitation variability is dominated by mixed layer thermodynamics. Additional analyses indicate that both dynamic and thermodynamic oceanic processes are important for establishing the leading modes of large-scale tropical precipitation variability. On the other hand, ocean dynamics likely dampens tropical Pacific variability at multidecadal time scales and beyond.


2012 ◽  
Vol 25 (3) ◽  
pp. 903-920 ◽  
Author(s):  
Renguang Wu ◽  
Jilong Chen ◽  
Wen Chen

Abstract Observational analysis reveals three types of El Niño–Southern Oscillation (ENSO) influences on the Indian summer monsoon (ISM): indirect influence of the preceding winter [December–February (DJF)] eastern equatorial Pacific (EEP) sea surface temperature (SST) anomalies (DJF-only cases), direct influence of the concurrent summer [June–September (JJAS)] EEP SST anomalies (JJAS-only cases), and coherent influence of both the preceding winter and concurrent summer EEP SST anomalies (DJF&JJAS cases). The present study distinguishes the three types of ENSO influences and investigates the processes connecting ENSO to the ISM separately. In the DJF-only cases, the preceding winter EEP SST anomalies induce north Indian Ocean (NIO) SST anomalies through air–sea interaction processes in the tropical Indian Ocean. The SST anomalies over the western Indian Ocean alter the surface air humidity there. Both processes favor an anomalous ISM. In the JJAS-only cases, an anomalous ISM is directly induced by ENSO through large-scale circulation changes. The meridional thermal contrast may also contribute to an anomalous ISM. In the DJF&JJAS cases, the preceding winter EEP SST anomalies induce NIO SST anomalies and change the surface air humidity over the western Indian Ocean. Concurrent summer EEP SST anomalies induce large-scale vertical motion anomalies over South Asia. Together, they lead to an anomalous ISM. The anomalous meridional thermal contrast may contribute to an anomalous ISM in late summer. Impacts of the preceding winter EEP SST anomalies in the DJF and JJAS cases may contribute to the contemporaneous correlation between ISM and EEP SST. There are more DJF&JJAS cases before than after the late 1970s. This provides an alternative interpretation for the observed weakening in the ISM–ENSO relationship around the late 1970s.


2016 ◽  
Vol 29 (22) ◽  
pp. 7941-7955 ◽  
Author(s):  
Julien Boucharel ◽  
Fei-Fei Jin ◽  
Matthew H. England ◽  
Boris Dewitte ◽  
I. I. Lin ◽  
...  

Abstract Recent studies have highlighted the role of subsurface ocean dynamics in modulating eastern Pacific (EPac) hurricane activity on interannual time scales. In particular, the well-known El Niño–Southern Oscillation (ENSO) recharge–discharge mechanism has been suggested to provide a good understanding of the year-to-year variability of hurricane activity in this region. This paper investigates the influence of equatorial subsurface subannual and intraseasonal oceanic variability on tropical cyclone (TC) activity in the EPac. That is to say, it examines previously unexplored time scales, shorter than interannual, in an attempt to explain the variability not related to ENSO. Using ocean reanalysis products and TC best-track archive, the role of subannual and intraseasonal equatorial Kelvin waves (EKW) in modulating hurricane intensity in the EPac is examined. It is shown first that these planetary waves have a clear control on the subannual and intraseasonal variability of thermocline depth in the EPac cyclone-active region. This is found to affect ocean subsurface temperature, which in turn fuels hurricane intensification with a marked seasonal-phase locking. This mechanism of TC fueling, which explains up to 30% of the variability of TC activity unrelated to ENSO (around 15%–20% of the total variability), is embedded in the large-scale equatorial dynamics and therefore offers some predictability with lead time up to 3–4 months at seasonal and subseasonal time scales.


2012 ◽  
Vol 140 (5) ◽  
pp. 1665-1682 ◽  
Author(s):  
Alexander Pui ◽  
Ashish Sharma ◽  
Agus Santoso ◽  
Seth Westra

Abstract The relationship between seasonal aggregate rainfall and large-scale climate modes, particularly the El Niño–Southern Oscillation (ENSO), has been the subject of a significant and ongoing research effort. However, relatively little is known about how the character of individual rainfall events varies as a function of each of these climate modes. This study investigates the change in rainfall occurrence, intensity, and storm interevent time at both daily and subdaily time scales in east Australia, as a function of indices for ENSO, the Indian Ocean dipole (IOD), and the southern annular mode (SAM), with a focus on the cool season months. Long-record datasets have been used to sample a large variety of climate events for better statistical significance. Results using both the daily and subdaily rainfall datasets consistently show that it is the occurrence of rainfall events, rather than the average intensity of rainfall during the events, which is most strongly influenced by each of the climate modes. This is shown to be most likely associated with changes to the time between wet spells. Furthermore, it is found that despite the recent attention in the research literature on other climate modes, ENSO remains the leading driver of rainfall variability over east Australia, particularly farther inland during the winter and spring seasons. These results have important implications for how water resources are managed, as well as how the implications of large-scale climate modes are included in rainfall models to best capture interannual and longer-scale variability.


2018 ◽  
Vol 31 (15) ◽  
pp. 5845-5872 ◽  
Author(s):  
Benjamin Pohl ◽  
Bastien Dieppois ◽  
Julien Crétat ◽  
Damian Lawler ◽  
Mathieu Rouault

During the austral summer season (November–February), southern African rainfall, south of 20°S, has been shown to vary over a range of time scales, from synoptic variability (3–7 days, mostly tropical temperate troughs) to interannual variability (2–8 years, reflecting the regional effects of El Niño–Southern Oscillation). There is also evidence for variability at quasi-decadal (8–13 years) and interdecadal (15–28 years) time scales, linked to the interdecadal Pacific oscillation and the Pacific decadal oscillation, respectively. This study aims to provide an overview of these ranges of variability and their influence on regional climate and large-scale atmospheric convection and quantify uncertainties associated with each time scale. We do this by applying k-means clustering onto long-term (1901–2011) daily outgoing longwave radiation anomalies derived from the 56 individual members of the Twentieth Century Reanalysis. Eight large-scale convective regimes are identified. Results show that 1) the seasonal occurrence of the regimes significantly varies at the low-frequency time scales mentioned above; 2) these modulations account for a significant fraction of seasonal rainfall variability over the region; 3) significant associations are found between some of the regimes and the aforementioned modes of climate variability; and 4) associated uncertainties in the regime occurrence and convection anomalies strongly decrease with time, especially the phasing of transient variability. The short-lived synoptic anomalies and the low-frequency anomalies are shown to be approximately additive, but even if they combine their respective influence at both scales, the magnitude of short-lived perturbations remains much larger.


Author(s):  
T. Spencer ◽  
A. S. Laughton ◽  
N. C. Flemming

Traditional ideas of intraseasonal and interannual climatic variability in the Western Indian Ocean, dominated by the mean cycle of seasonally reversing monsoon winds, are being replaced by a more complex picture, comprising air–sea interactions and feedbacks; atmosphere–ocean dynamics operating over intrannual to interdecadal time–scales; and climatological and oceanographic boundary condition changes at centennial to millennial time–scales. These forcings, which are mediated by the orography of East Africa and the Asian continent and by seafloor topography (most notably in this area by the banks and shoals of the Mascarene Plateau which interrupts the westward–flowing South Equatorial Current), determine fluxes of water, nutrients and biogeochemical constituents, the essential controls on ocean and shallow–sea productivity and ecosystem health. Better prediction of climatic variability for rain–fed agriculture, and the development of sustainable marine resource use, is of critical importance to the developing countries of this region but requires further basic information gathering and coordinated ocean observation systems.


2020 ◽  
Vol 33 (2) ◽  
pp. 749-765 ◽  
Author(s):  
Rondrotiana Barimalala ◽  
Ross C. Blamey ◽  
Fabien Desbiolles ◽  
Chris J. C. Reason

AbstractThe Mozambique Channel trough (MCT) is a cyclonic region prominent in austral summer in the central and southern Mozambique Channel. It first becomes evident in December with a peak in strength in February when the Mozambique Channel is warmest and the Mascarene high (MH) is located farthest southeast in the Indian Ocean basin. The strength and the timing of the mean MCT are linked to that of the cross-equatorial northeasterly monsoon in the tropical western Indian Ocean, which curves as northwesterlies toward northern Madagascar. The interannual variability in the MCT is associated with moist convection over the Mozambique Channel and is modulated by the location of the warm sea surface temperatures in the south Indian Ocean. Variability of the MCT shows a strong relationship with the equatorial westerlies north of Madagascar and the latitudinal extension of the MH. Summers with strong MCT activity are characterized by a prominent cyclonic circulation over the Mozambique Channel, extending to the midlatitudes. These are favorable for the development of tropical–extratropical cloud bands over the southwestern Indian Ocean and trigger an increase in rainfall over the ocean but a decrease over the southern African mainland. Most years with a weak MCT are associated with strong positive south Indian Ocean subtropical dipole events, during which the subcontinent tends to receive more rainfall whereas Madagascar and northern Mozambique are anomalously dry.


2021 ◽  
pp. 1
Author(s):  
Yaru Guo ◽  
Yuanlong Li ◽  
Fan Wang ◽  
Yuntao Wei

AbstractNingaloo Niño – the interannually occurring warming episode in the southeast Indian Ocean (SEIO) – has strong signatures in ocean temperature and circulation and exerts profound impacts on regional climate and marine biosystems. Analysis of observational data and eddy-resolving regional ocean model simulations reveals that the Ningaloo Niño/Niña can also induce pronounced variability in ocean salinity, causing large-scale sea surface salinity (SSS) freshening of 0.15–0.20 psu in the SEIO during its warm phase. Model experiments are performed to understand the underlying processes. This SSS freshening is mutually caused by the increased local precipitation (~68%) and enhanced fresh-water transport of the Indonesian Throughflow (ITF; ~28%) during Ningaloo Niño events. The effects of other processes, such as local winds and evaporation, are secondary (~18%). The ITF enhances the southward fresh-water advection near the eastern boundary, which is critical in causing the strong freshening (> 0.20 psu) near the Western Australian coast. Owing to the strong modulation effect of the ITF, SSS near the coast bears a higher correlation with the El Niño-Southern Oscillation (0.57, 0.77, and 0.70 with Niño-3, Niño-4, and Niño-3.4 indices, respectively) than sea surface temperature (-0.27, -0.42, and -0.35) during 1993-2016. Yet, an idealized model experiment with artificial damping for salinity anomaly indicates that ocean salinity has limited impact on ocean near-surface stratification and thus minimal feedback effect on the warming of Ningaloo Niño.


Author(s):  
Hans von Storch ◽  
Leone Cavicchia ◽  
Frauke Feser ◽  
Delei Li

We review the state of dynamical downscaling with scale-constrained regional and global models. The methodology, in particular spectral nudging, has become a routine and well-researched tool for hindcasting climatologies of sub-synoptic atmospheric disturbances in coastal regions. At present, the spectrum of applications is expanding to other phenomena, but also to ocean dynamics and to extended forecasting. Also new diagnostic challenges are appearing such as spatial characteristics of small-scale phenomena such as Low Level Jets.


2013 ◽  
Vol 10 (10) ◽  
pp. 6677-6698 ◽  
Author(s):  
J. C. Currie ◽  
M. Lengaigne ◽  
J. Vialard ◽  
D. M. Kaplan ◽  
O. Aumont ◽  
...  

Abstract. The Indian Ocean Dipole (IOD) and the El Niño/Southern Oscillation (ENSO) are independent climate modes, which frequently co-occur, driving significant interannual changes within the Indian Ocean. We use a four-decade hindcast from a coupled biophysical ocean general circulation model, to disentangle patterns of chlorophyll anomalies driven by these two climate modes. Comparisons with remotely sensed records show that the simulation competently reproduces the chlorophyll seasonal cycle, as well as open-ocean anomalies during the 1997/1998 ENSO and IOD event. Results suggest that anomalous surface and euphotic-layer chlorophyll blooms in the eastern equatorial Indian Ocean in fall, and southern Bay of Bengal in winter, are primarily related to IOD forcing. A negative influence of IOD on chlorophyll concentrations is shown in a region around the southern tip of India in fall. IOD also depresses depth-integrated chlorophyll in the 5–10° S thermocline ridge region, yet the signal is negligible in surface chlorophyll. The only investigated region where ENSO has a greater influence on chlorophyll than does IOD, is in the Somalia upwelling region, where it causes a decrease in fall and winter chlorophyll by reducing local upwelling winds. Yet unlike most other regions examined, the combined explanatory power of IOD and ENSO in predicting depth-integrated chlorophyll anomalies is relatively low in this region, suggestive that other drivers are important there. We show that the chlorophyll impact of climate indices is frequently asymmetric, with a general tendency for larger positive than negative chlorophyll anomalies. Our results suggest that ENSO and IOD cause significant and predictable regional re-organisation of chlorophyll via their influence on near-surface oceanography. Resolving the details of these effects should improve our understanding, and eventually gain predictability, of interannual changes in Indian Ocean productivity, fisheries, ecosystems and carbon budgets.


Sign in / Sign up

Export Citation Format

Share Document