scholarly journals From Synoptic to Interdecadal Variability in Southern African Rainfall: Toward a Unified View across Time Scales

2018 ◽  
Vol 31 (15) ◽  
pp. 5845-5872 ◽  
Author(s):  
Benjamin Pohl ◽  
Bastien Dieppois ◽  
Julien Crétat ◽  
Damian Lawler ◽  
Mathieu Rouault

During the austral summer season (November–February), southern African rainfall, south of 20°S, has been shown to vary over a range of time scales, from synoptic variability (3–7 days, mostly tropical temperate troughs) to interannual variability (2–8 years, reflecting the regional effects of El Niño–Southern Oscillation). There is also evidence for variability at quasi-decadal (8–13 years) and interdecadal (15–28 years) time scales, linked to the interdecadal Pacific oscillation and the Pacific decadal oscillation, respectively. This study aims to provide an overview of these ranges of variability and their influence on regional climate and large-scale atmospheric convection and quantify uncertainties associated with each time scale. We do this by applying k-means clustering onto long-term (1901–2011) daily outgoing longwave radiation anomalies derived from the 56 individual members of the Twentieth Century Reanalysis. Eight large-scale convective regimes are identified. Results show that 1) the seasonal occurrence of the regimes significantly varies at the low-frequency time scales mentioned above; 2) these modulations account for a significant fraction of seasonal rainfall variability over the region; 3) significant associations are found between some of the regimes and the aforementioned modes of climate variability; and 4) associated uncertainties in the regime occurrence and convection anomalies strongly decrease with time, especially the phasing of transient variability. The short-lived synoptic anomalies and the low-frequency anomalies are shown to be approximately additive, but even if they combine their respective influence at both scales, the magnitude of short-lived perturbations remains much larger.

2005 ◽  
Vol 18 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Holger Meinke ◽  
Peter deVoil ◽  
Graeme L. Hammer ◽  
Scott Power ◽  
Robert Allan ◽  
...  

Abstract Rainfall variability occurs over a wide range of temporal scales. Knowledge and understanding of such variability can lead to improved risk management practices in agricultural and other industries. Analyses of temporal patterns in 100 yr of observed monthly global sea surface temperature and sea level pressure data show that the single most important cause of explainable, terrestrial rainfall variability resides within the El Niño–Southern Oscillation (ENSO) frequency domain (2.5–8.0 yr), followed by a slightly weaker but highly significant decadal signal (9–13 yr), with some evidence of lesser but significant rainfall variability at interdecadal time scales (15–18 yr). Most of the rainfall variability significantly linked to frequencies lower than ENSO occurs in the Australasian region, with smaller effects in North and South America, central and southern Africa, and western Europe. While low-frequency (LF) signals at a decadal frequency are dominant, the variability evident was ENSO-like in all the frequency domains considered. The extent to which such LF variability is (i) predictable and (ii) either part of the overall ENSO variability or caused by independent processes remains an as yet unanswered question. Further progress can only be made through mechanistic studies using a variety of models.


2005 ◽  
Vol 18 (5) ◽  
pp. 702-718 ◽  
Author(s):  
Leila M. V. Carvalho ◽  
Charles Jones ◽  
Tércio Ambrizzi

Abstract The Antarctic Oscillation (AAO) has been observed as a deep oscillation in the mid- and high southern latitudes. In the present study, the AAO pattern is defined as the leading mode of the empirical orthogonal function (EOF-1) obtained from daily 700-hPa geopotential height anomalies from 1979 to 2000. Here the objective is to identify daily positive and negative AAO phases and relationships with intraseasonal activity in the Tropics and phases of the El Niño–Southern Oscillation (ENSO) during the austral summer [December–January–February (DJF)]. Positive and negative AAO phases are defined when the daily EOF-1 time coefficient is above (or below) one standard deviation of the DJF mean. Composites of low-frequency sea surface temperature variation, 200-hPa zonal wind, and outgoing longwave radiation (OLR) indicate that negative (positive) phases of the AAO are dominant when patterns of SST, convection, and circulation anomalies resemble El Niño (La Niña) phases of ENSO. Enhanced intraseasonal activity from the Tropics to the extratropics of the Southern (Northern) Hemisphere is associated with negative (positive) phases of the AAO. In addition, there is indication that the onset of negative phases of the AAO is related to the propagation of the Madden–Julian oscillation (MJO). Suppression of intraseasonal convective activity over Indonesia is observed in positive AAO phases. It is hypothesized that deep convection in the central tropical Pacific, which is related to either El Niño or eastward-propagating MJO, or a combination of both phenomena, modulates the Southern Hemisphere circulation and favors negative AAO phases during DJF. The alternation of AAO phases seems to be linked to the latitudinal migration of the subtropical upper-level jet and variations in the intensity of the polar jet. This, in turn, affects extratropical cyclone properties, such as origin, minimum/maximum central pressure, and their equatorward propagation.


2018 ◽  
Vol 31 (24) ◽  
pp. 10105-10121 ◽  
Author(s):  
Yu Cheng ◽  
Lisa M. Beal ◽  
Ben P. Kirtman ◽  
Dian Putrasahan

We investigate the interannual variability of Agulhas leakage in an ocean-eddy-resolving coupled simulation and characterize its influence on regional climate. Many observational leakage estimates are based on the study of Agulhas rings, whereas recent model studies suggest that rings and eddies carry less than half of leakage transport. While leakage variability is dominated by eddies at seasonal time scales, the noneddy leakage transport is likely to be constrained by large-scale forcing at longer time scales. To investigate this, leakage transport is quantified using an offline Lagrangian particle tracking approach. We decompose the velocity field into eddying and large-scale fields and then recreate a number of total velocity fields by modifying the eddying component to assess the dependence of leakage variability on the eddies. We find that the resulting leakage time series show strong coherence at periods longer than 1000 days and that 50% of the variance at interannual time scales is linked to the smoothed, large-scale field. As shown previously in ocean models, we find Agulhas leakage variability to be related to a meridional shift and/or strengthening of the westerlies. High leakage periods are associated with east–west contrasting patterns of sea surface temperature, surface heat fluxes, and convective rainfall, with positive anomalies over the retroflection region and negative anomalies within the Indian Ocean to the east. High leakage periods are also related to reduced inland convective rainfall over southeastern Africa in austral summer.


2006 ◽  
Vol 19 (20) ◽  
pp. 5009-5030 ◽  
Author(s):  
P. Lehodey ◽  
J. Alheit ◽  
M. Barange ◽  
T. Baumgartner ◽  
G. Beaugrand ◽  
...  

Abstract Fish population variability and fisheries activities are closely linked to weather and climate dynamics. While weather at sea directly affects fishing, environmental variability determines the distribution, migration, and abundance of fish. Fishery science grew up during the last century by integrating knowledge from oceanography, fish biology, marine ecology, and fish population dynamics, largely focused on the great Northern Hemisphere fisheries. During this period, understanding and explaining interannual fish recruitment variability became a major focus for fisheries oceanographers. Yet, the close link between climate and fisheries is best illustrated by the effect of “unexpected” events—that is, nonseasonal, and sometimes catastrophic—on fish exploitation, such as those associated with the El Niño–Southern Oscillation (ENSO). The observation that fish populations fluctuate at decadal time scales and show patterns of synchrony while being geographically separated drew attention to oceanographic processes driven by low-frequency signals, as reflected by indices tracking large-scale climate patterns such as the Pacific decadal oscillation (PDO) and the North Atlantic Oscillation (NAO). This low-frequency variability was first observed in catch fluctuations of small pelagic fish (anchovies and sardines), but similar effects soon emerged for larger fish such as salmon, various groundfish species, and some tuna species. Today, the availability of long time series of observations combined with major scientific advances in sampling and modeling the oceans’ ecosystems allows fisheries science to investigate processes generating variability in abundance, distribution, and dynamics of fish species at daily, decadal, and even centennial scales. These studies are central to the research program of Global Ocean Ecosystems Dynamics (GLOBEC). This review presents examples of relationships between climate variability and fisheries at these different time scales for species covering various marine ecosystems ranging from equatorial to subarctic regions. Some of the known mechanisms linking climate variability and exploited fish populations are described, as well as some leading hypotheses, and their implications for their management and for the modeling of their dynamics. It is concluded with recommendations for collaborative work between climatologists, oceanographers, and fisheries scientists to resolve some of the outstanding problems in the development of sustainable fisheries.


Author(s):  
J. Zinke ◽  
M. Pfeiffer ◽  
O. Timm ◽  
W.–C. Dullo ◽  
G. R. Davies

We present a set of Porites coral oxygen isotope records from the tropical and subtropical Western Indian Ocean covering the past 120–336 years. All records were thoroughly validated for proxy response to regional climate factors and their relation to large–scale climate modes. The records show markedly different imprints of regional climate factors. At the same time, all coral records show clear teleconnections between the Western Indian Ocean and the El Niño–Southern Oscillation (ENSO). The multi–proxy site analysis enables the detection of the covariance structure between individual records and climate modes such as ENSO. This method unravels shifts in ENSO teleconnectivity of the Western and Central Indian Ocean on multi–decadal time–scales (after 1976). The Seychelles record shows a stationary correlation with ENSO, Chagos corals show evidence for non–stationary d 18 O/ENSO relationships and the Southwestern Indian Ocean corals show a strong relationship with ENSO when the forcing is strong (1880–1920, 1970 to present). Our results indicate that the coral δ 18 O, in combination with other proxies, can be used to monitor temporal and spatial variations in the sea–surface temperature and the fresh water balance within the Indian Ocean on interannual to interdecadal time–scales.


2018 ◽  
Vol 22 (6) ◽  
pp. 3105-3124 ◽  
Author(s):  
Zilefac Elvis Asong ◽  
Howard Simon Wheater ◽  
Barrie Bonsal ◽  
Saman Razavi ◽  
Sopan Kurkute

Abstract. Drought is a recurring extreme climate event and among the most costly natural disasters in the world. This is particularly true over Canada, where drought is both a frequent and damaging phenomenon with impacts on regional water resources, agriculture, industry, aquatic ecosystems, and health. However, nationwide drought assessments are currently lacking and impacted by limited ground-based observations. This study provides a comprehensive analysis of historical droughts over the whole of Canada, including the role of large-scale teleconnections. Drought events are characterized by the Standardized Precipitation Evapotranspiration Index (SPEI) over various temporal scales (1, 3, 6, and 12 consecutive months, 6 months from April to September, and 12 months from October to September) applied to different gridded monthly data sets for the period 1950–2013. The Mann–Kendall test, rotated empirical orthogonal function, continuous wavelet transform, and wavelet coherence analyses are used, respectively, to investigate the trend, spatio-temporal patterns, periodicity, and teleconnectivity of drought events. Results indicate that southern (northern) parts of the country experienced significant trends towards drier (wetter) conditions although substantial variability exists. Two spatially well-defined regions with different temporal evolution of droughts were identified – the Canadian Prairies and northern central Canada. The analyses also revealed the presence of a dominant periodicity of between 8 and 32 months in the Prairie region and between 8 and 40 months in the northern central region. These cycles of low-frequency variability are found to be associated principally with the Pacific–North American (PNA) and Multivariate El Niño/Southern Oscillation Index (MEI) relative to other considered large-scale climate indices. This study is the first of its kind to identify dominant periodicities in drought variability over the whole of Canada in terms of when the drought events occur, their duration, and how often they occur.


2021 ◽  
pp. 1
Author(s):  
Yaru Guo ◽  
Yuanlong Li ◽  
Fan Wang ◽  
Yuntao Wei

AbstractNingaloo Niño – the interannually occurring warming episode in the southeast Indian Ocean (SEIO) – has strong signatures in ocean temperature and circulation and exerts profound impacts on regional climate and marine biosystems. Analysis of observational data and eddy-resolving regional ocean model simulations reveals that the Ningaloo Niño/Niña can also induce pronounced variability in ocean salinity, causing large-scale sea surface salinity (SSS) freshening of 0.15–0.20 psu in the SEIO during its warm phase. Model experiments are performed to understand the underlying processes. This SSS freshening is mutually caused by the increased local precipitation (~68%) and enhanced fresh-water transport of the Indonesian Throughflow (ITF; ~28%) during Ningaloo Niño events. The effects of other processes, such as local winds and evaporation, are secondary (~18%). The ITF enhances the southward fresh-water advection near the eastern boundary, which is critical in causing the strong freshening (> 0.20 psu) near the Western Australian coast. Owing to the strong modulation effect of the ITF, SSS near the coast bears a higher correlation with the El Niño-Southern Oscillation (0.57, 0.77, and 0.70 with Niño-3, Niño-4, and Niño-3.4 indices, respectively) than sea surface temperature (-0.27, -0.42, and -0.35) during 1993-2016. Yet, an idealized model experiment with artificial damping for salinity anomaly indicates that ocean salinity has limited impact on ocean near-surface stratification and thus minimal feedback effect on the warming of Ningaloo Niño.


2020 ◽  
Vol 33 (10) ◽  
pp. 4009-4025
Author(s):  
Shuyu Zhang ◽  
Thian Yew Gan ◽  
Andrew B. G. Bush

AbstractUnder global warming, Arctic sea ice has declined significantly in recent decades, with years of extremely low sea ice occurring more frequently. Recent studies suggest that teleconnections with large-scale climate patterns could induce the observed extreme sea ice loss. In this study, a probabilistic analysis of Arctic sea ice was conducted using quantile regression analysis with covariates, including time and climate indices. From temporal trends at quantile levels from 0.01 to 0.99, Arctic sea ice shows statistically significant decreases over all quantile levels, although of different magnitudes at different quantiles. At the representative extreme quantile levels of the 5th and 95th percentiles, the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), and the Pacific–North American pattern (PNA) have more significant influence on Arctic sea ice than El Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), and the Atlantic multidecadal oscillation (AMO). Positive AO as well as positive NAO contribute to low winter sea ice, and a positive PNA contributes to low summer Arctic sea ice. If, in addition to these conditions, there is concurrently positive AMO and PDO, the sea ice decrease is amplified. Teleconnections between Arctic sea ice and the climate patterns were demonstrated through a composite analysis of the climate variables. The anomalously strong anticyclonic circulation during the years of positive AO, NAO, and PNA promotes more sea ice export through Fram Strait, resulting in excessive sea ice loss. The probabilistic analyses of the teleconnections between the Arctic sea ice and climate patterns confirm the crucial role that the climate patterns and their combinations play in overall sea ice reduction, but particularly for the low and high quantiles of sea ice concentration.


2019 ◽  
Vol 15 (5) ◽  
pp. 1845-1859 ◽  
Author(s):  
Ignacio A. Jara ◽  
Antonio Maldonado ◽  
Leticia González ◽  
Armand Hernández ◽  
Alberto Sáez ◽  
...  

Abstract. Modern precipitation anomalies in the Altiplano, South America, are closely linked to the strength of the South American summer monsoon (SASM), which is influenced by large-scale climate features sourced in the tropics such as the Intertropical Convergence Zone (ITCZ) and El Niño–Southern Oscillation (ENSO). However, the timing, direction, and spatial extent of precipitation changes prior to the instrumental period are still largely unknown, preventing a better understanding of the long-term drivers of the SASM and their effects over the Altiplano. Here we present a detailed pollen reconstruction from a sedimentary sequence covering the period between 4500 and 1000 cal yr BP in Lago Chungará (18∘ S; 4570 m a.s.l.), a high-elevation lake on the southwestern margin of the Altiplano where precipitation is delivered almost exclusively during the mature phase of the SASM over the austral summer. We distinguish three well-defined centennial-scale anomalies, with dry conditions between 4100–3300 and 1600–1000 cal yr BP and a conspicuous humid interval between 2400 and 1600 cal yr BP, which resulted from the weakening and strengthening of the SASM, respectively. Comparisons with other climate reconstructions from the Altiplano, the Atacama Desert, the tropical Andes, and the southwestern Atlantic coast reveal that – unlike modern climatological controls – past precipitation anomalies at Lago Chungará were largely decoupled from north–south shifts in the ITCZ and ENSO. A regionally coherent pattern of centennial-scale SASM variations and a significant latitudinal gradient in precipitation responses suggest the contribution of an extratropical moisture source for the SASM, with significant effects on precipitation variability in the southern Altiplano.


2007 ◽  
Vol 20 (22) ◽  
pp. 5553-5571 ◽  
Author(s):  
Masao Kanamitsu ◽  
Hideki Kanamaru

Abstract For the purpose of producing datasets for regional-scale climate change research and application, the NCEP–NCAR reanalysis for the period 1948–2005 was dynamically downscaled to hourly, 10-km resolution over California using the Regional Spectral Model. This is Part I of a two-part paper, describing the details of the downscaling system and comparing the downscaled analysis [California Reanalysis Downscaling at 10 km (CaRD10)] against observation and global analysis. An extensive validation of the downscaled analysis was performed using station observations, Higgins gridded precipitation analysis, and Precipitation-Elevation Regression on Independent Slopes Model (PRISM) precipitation analysis. In general, the CaRD10 near-surface wind and temperature fit better to regional-scale station observations than the NCEP–NCAR reanalysis used to force the regional model, supporting the premise that the regional downscaling is a viable method to attain regional detail from large-scale analysis. This advantage of CaRD10 was found on all time scales, ranging from hourly to decadal scales (i.e., from diurnal variation to multidecadal trend). Dynamically downscaled analysis provides ways to study various regional climate phenomena of different time scales because all produced variables are dynamically, physically, and hydrologically consistent. However, the CaRD10 is not free from problems. It suffers from positive bias in precipitation for heavy precipitation events. The CaRD10 is inaccurate near the lateral boundary where regional detail is damped by the lateral boundary relaxation. It is important to understand these limitations before the downscaled analysis is used for research.


Sign in / Sign up

Export Citation Format

Share Document