Deuterated as a probe of isotope fractionation in star-forming regions

Author(s):  
Helen Roberts ◽  
T.J Millar

Observations of molecular D/H ratios in the interstellar medium are used to probe the physical conditions, such as temperature, ionization fraction and the importance of gas–grain reactions. In cold, dense regions, such as cores which are collapsing to form stars, the level of deuterium fractionation depends on the conversion of into its deuterated isotopologues (H 2 D + , D 2 H + and ). The relative abundances of these molecules uniquely probe the centres of these cores where other, heavier, species have frozen onto dust grains. We present models of the deuterium chemistry close to the centre of a pre-stellar core, in the last stage before the star forms, showing the dependence of the observable molecular D/H ratios on the physical parameters and rate coefficients that are assumed. We compare model predictions with the latest observations of these regions.

2020 ◽  
Vol 493 (3) ◽  
pp. 3491-3495 ◽  
Author(s):  
J Kłos ◽  
P J Dagdigian ◽  
M H Alexander ◽  
A Faure ◽  
F Lique

ABSTRACT Observations of hyperfine resolved transitions of the hydroxyl radical (OH) are unique probes of the physical conditions in molecular clouds. In particular, hyperfine intensities can be used as an effective thermometer over a wide range of molecular densities. Accurate modelling of the OH emission spectra requires the calculation of collisional rate coefficients for the excitation of OH by H2, the most abundant collisional partner in the molecular clouds. Here, we determine hyperfine resolved rate coefficients for the excitation of OH by H2 using a recently developed highly accurate potential energy surface. State-to-state rate coefficients between the lower hyperfine levels were calculated using recoupling techniques for temperature ranging from 10 to 150 K. Significant differences were found with the earlier values currently used in astrophysical models, the new rate coefficients being larger than the previous ones. Finally, we compute the excitation of the OH radical in cold molecular clouds and star-forming regions. The new rate coefficients were found to increase the hyperfine intensities by a factor of ∼1–2. Consequently, we recommend using this new set of data in any astrophysical model of OH excitation.


2019 ◽  
Vol 490 (2) ◽  
pp. 2178-2182 ◽  
Author(s):  
N Bouhafs ◽  
A Bacmann ◽  
A Faure ◽  
F Lique

ABSTRACT Accurate estimation of the abundance of the NH2 radical in the interstellar medium requires accurate radiative and collisional rate coefficients. The calculation of hyperfine-resolved rate coefficients for the collisional (de-)excitation of NH2 by both ortho- and para-H2 is presented in this work. Hyperfine-resolved rate coefficients are calculated from pure rotational close-coupling rate coefficients using the Mj randomizing approximation. Rate coefficients for temperatures ranging from 5 to 150 K were computed for all hyperfine transitions among the first 15 rotational energy levels of both ortho- and para-NH2 in collisions with ortho- and para-H2. The new data were then employed in radiative transfer calculations to simulate the excitation of NH2 in typical star-forming regions such as W31C, where NH2 is seen in emission. We compared the excitation and brightness temperatures for different NH2 transitions obtained using the new and the previously available collisional data. It is found that the new rate coefficients increase the simulated line intensities by a factor ∼10–30. As a consequence, NH2 abundance derived from the observations will be significantly reduced by the use of the present rate coefficients.


2021 ◽  
Vol 922 (2) ◽  
pp. 169
Author(s):  
Juan García de la Concepción ◽  
Cristina Puzzarini ◽  
Vincenzo Barone ◽  
Izaskun Jiménez-Serra ◽  
Octavio Roncero

Abstract In recent years, phosphorus monoxide (PO), an important molecule for prebiotic chemistry, has been detected in star-forming regions and in the comet 67P/Churyumov-Gerasimenko. These studies have revealed that, in the interstellar medium (ISM), PO is systematically the most abundant P-bearing species, with abundances that are about one to three times greater than those derived for phosphorus nitride (PN), the second-most abundant P-containing molecule. The reason why PO is more abundant than PN remains still unclear. Experimental studies with phosphorus in the gas phase are not available, probably because of the difficulties in dealing with its compounds. Therefore, the reactivity of atomic phosphorus needs to be investigated using reliable computational tools. To this end, state-of-the-art quantum-chemical computations have been employed to evaluate accurate reaction rates and branching ratios for the P + OH → PO + H and P + H2O → PO + H2 reactions in the framework of a master equation approach based on ab initio transition state theory. The hypothesis that OH and H2O can be potential oxidizing agents of atomic phosphorus is based on the ubiquitous presence of H2O in the ISM. Its destruction then produces OH, which is another very abundant species. While the reaction of atomic phosphorus in its ground state with water is not a relevant source of PO because of emerged energy barriers, the P + OH reaction represents an important formation route of PO in the ISM. Our kinetic results show that this reaction follows an Arrhenius–Kooij behavior, and thus its rate coefficients (α = 2.28 × 10−10 cm3 molecule−1 s−1, β = 0.16 and γ = 0.37 K) increase by increasing the temperature.


2007 ◽  
Vol 3 (S242) ◽  
pp. 234-235
Author(s):  
T. Umemoto ◽  
N. Mochizuki ◽  
K. M. Shibata ◽  
D.-G. Roh ◽  
H.-S. Chung

AbstractWe present the results of a mm wavelength methanol maser survey towards massive star forming regions. We have carried out Class II methanol maser observations at 86.6 GHz, 86.9 GHz and 107.0 GHz, simultaneously, using the Nobeyama 45 m telescope. We selected 108 6.7 GHz methanol maser sources with declinations above −25 degrees and fluxes above 20 Jy. The detection limit of maser observations was ~3 Jy. Of the 93 sources surveyed so far, we detected methanol emission in 25 sources (27%) and “maser” emission in nine sources (10%), of which thre “maser” sources are new detections. The detection rate for maser emission is about half that of a survey of the southern sky (Caswell et al. 2000). There is a correlation between the maser flux of 107 GHz and 6.7 GHz/12 GHz emission, but no correlation with the “thermal” (non maser) emission. From results of other molecular line observations, we found that the sources with methanol emission show higher gas temperatures and twice the detection rate of SiO emission. This may suggest that dust evaporation and destruction by shock are responsible for the high abundance of methanol molecules, one of the required physical conditions for maser emission.


1999 ◽  
Vol 16 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Fabian Walter

AbstractHigh resolution HI observations of nearby dwarf galaxies (most of which are situated in the M81 group at a distance of about 3·2 Mpc) reveal that their neutral interstellar medium (ISM) is dominated by hole-like features most of which are expanding. A comparison of the physical properties of these holes with the ones found in more massive spiral galaxies (such as M31 and M33) shows that they tend to reach much larger sizes in dwarf galaxies. This can be understood in terms of the galaxy's gravitational potential. The origin of these features is still a matter of debate. In general, young star forming regions (OB-associations) are held responsible for their formation. This picture, however, is not without its critics and other mechanisms such as the infall of high velocity clouds, turbulent motions or even gamma ray bursters have been recently proposed. Here I will present one example of a supergiant shell in IC 2574 which corroborates the picture that OB associations are indeed creating these structures. This particular supergiant shell is currently the most promising case to study the effects of the combined effects of stellar winds and supernova explosions which shape the neutral interstellar medium of (dwarf) galaxies.


1999 ◽  
Vol 190 ◽  
pp. 67-73 ◽  
Author(s):  
Mónica Rubio

The molecular gas content in the Magellanic Clouds has been studied, with different spatial coverage and resolution, through obervations of CO(1-0) line emission. In the LMC and the SMC the molecular gas is dominated by clouds whose properties are different from those of their Galactic counterparts. The relation between the intensity of CO emission and molecular hydrogen column density, or the conversion factor X, is different than that of molecular clouds in our Galaxy and depends on the ambient physical conditions. Studying the molecular gas through observations in the H2 emission line may prove an alternative way to determine the molecular content associated with star forming regions in the Magellanic Clouds. In particular, results obtained towards 30 Doradus in the LMC are presented.


2019 ◽  
Vol 629 ◽  
pp. A77
Author(s):  
A. I. Gómez-Ruiz ◽  
A. Gusdorf ◽  
S. Leurini ◽  
K. M. Menten ◽  
S. Takahashi ◽  
...  

Context. OMC-2/3 is one of the nearest embedded cluster-forming regions that includes intermediate-mass protostars at early stages of evolution. A previous CO (3–2) mapping survey towards this region revealed outflow activity related to sources at different evolutionary phases. Aims. The present work presents a study of the warm gas in the high-velocity emission from several outflows found in CO (3–2) emission by previous observations, determines their physical conditions, and makes a comparison with previous results in low-mass star-forming regions. Methods. We used the CHAMP+ heterodyne array on the APEX telescope to map the CO (6–5) and CO (7–6) emission in the OMC-2 FIR 6 and OMC-3 MMS 1-6 regions, and to observe 13CO (6–5) at selected positions. We analyzed these data together with previous CO (3–2) observations. In addition, we mapped the SiO (5–4) emission in OMC-2 FIR 6. Results. The CO (6–5) emission was detected in most of the outflow lobes in the mapped regions, while the CO (7–6) was found mostly in the OMC-3 outflows. In the OMC-3 MMS 5 outflow, a previously undetected extremely high-velocity gas was found in CO (6–5). This extremely high-velocity emission arises from the regions close to the central object MMS 5. Radiative transfer models revealed that the high-velocity gas from MMS 5 outflow consists of gas with nH2 = 104–105 cm−3 and T > 200 K, similar to what is observed in young Class 0 low-mass protostars. For the other outflows, values of nH2 > 104 cm−3 were found. Conclusions. The physical conditions and kinematic properties of the young intermediate-mass outflows presented here are similar to those found in outflows from Class 0 low-mass objects. Due to their excitation requirements, mid − J CO lines are good tracers of extremely high-velocity gas in young outflows likely related to jets.


2020 ◽  
Vol 494 (4) ◽  
pp. 4751-4770 ◽  
Author(s):  
Mallory Molina ◽  
Nikhil Ajgaonkar ◽  
Renbin Yan ◽  
Robin Ciardullo ◽  
Caryl Gronwall ◽  
...  

ABSTRACT The attenuation of light from star-forming galaxies is correlated with a multitude of physical parameters including star formation rate, metallicity and total dust content. This variation in attenuation is even more evident on kiloparsec scales, which is the relevant size for many current spectroscopic integral field unit surveys. To understand the cause of this variation, we present and analyse Swift/UVOT near-UV (NUV) images and SDSS/MaNGA emission-line maps of 29 nearby (z < 0.084) star-forming galaxies. We resolve kiloparsec-sized star-forming regions within the galaxies and compare their optical nebular attenuation (i.e. the Balmer emission line optical depth, $\tau ^{l}_{B}\equiv \tau _{\textrm {H}\beta }-\tau _{\textrm {H}\alpha }$) and NUV stellar continuum attenuation (via the NUV power-law index, β) to the attenuation law described by Battisti et al. We show the data agree with that model, albeit with significant scatter. We explore the dependence of the scatter of the β–$\tau ^{l}_{B}$ measurements from the star-forming regions on different physical parameters, including distance from the nucleus, star formation rate and total dust content. Finally, we compare the measured $\tau ^{l}_{B}$ and β values for the individual star-forming regions with those of the integrated galaxy light. We find a strong variation in β between the kiloparsec scale and the larger galaxy scale that is not seen in $\tau ^{l}_{B}$. We conclude that the sightline dependence of UV attenuation and the reddening of β due to the light from older stellar populations could contribute to the scatter in the β–$\tau ^{l}_{B}$ relation.


Sign in / Sign up

Export Citation Format

Share Document