Turbulent flux events in a nearly neutral atmospheric boundary layer

Author(s):  
Roddam Narasimha ◽  
S. Rudra Kumar ◽  
A Prabhu ◽  
S.V Kailas

We propose here a novel method of analysing turbulent momentum flux signals. The data for the analysis come from a nearly neutral atmospheric boundary layer and are taken at a height of 4 m above ground corresponding to 1.1×10 5 wall units, within the log layer for the mean velocity. The method of analysis involves examining the instantaneous flux profiles that exceed a given threshold, for which an optimum value is found to be 1 s.d. of the flux signal. It is found feasible to identify normalized flux variation signatures separately for positive and negative ‘flux events’—the sign being determined by that of the flux itself. Using these signatures, the flux signal is transformed to one of events characterized by the time of occurrence, duration and intensity. It is also found that both the average duration and the average time-interval between successive events are of order 1 s, about four orders of magnitude higher than a wall unit in time. This episodic description of the turbulence flux in the time domain enables us to identify separately productive, counter-productive and idle periods (accounting, respectively, for 36, 15 and 49% of the time), taking as criterion the generation of the momentum flux. A ‘burstiness’ index of 0.72 is found for the data. Comparison with laboratory data indicates higher (/lower) ejection (/sweep) quadrant occupancy but lower (/higher) contributions to flux from the ejection (/sweep) quadrant at the high Reynolds numbers of the atmospheric boundary layer. Possible connections with the concept of active and passive motion in a turbulent boundary layer are briefly discussed.

2007 ◽  
Vol 16 (4) ◽  
pp. 367-373 ◽  
Author(s):  
Rostislav Kouznetsov ◽  
Valerii F. Kramar ◽  
Margarita A. Kallistratova

2015 ◽  
Vol 72 (5) ◽  
pp. 1713-1726 ◽  
Author(s):  
Jordan M. Wilson ◽  
Subhas K. Venayagamoorthy

Abstract In this study, shear-based parameterizations of turbulent mixing in the stable atmospheric boundary layer (SABL) are proposed. A relevant length-scale estimate for the mixing length of the turbulent momentum field is constructed from the turbulent kinetic energy and the mean shear rate S as . Using observational data from two field campaigns—the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment and the 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99)— is shown to have a strong correlation with . The relationship between and corresponds to the ratio of the magnitude of the tangential components of the turbulent momentum flux tensor to , known as stress intensity ratio, . The field data clearly show that is linked to stability. The stress intensity ratio also depends on the flow energetics that can be assessed using a shear-production Reynolds number, , where P is shear production of turbulent kinetic energy and is the kinematic viscosity. This analysis shows that high mixing rates can indeed persist at strong stability. On this basis, shear-based parameterizations are proposed for the eddy diffusivity for momentum, , and eddy diffusivity for heat, , showing remarkable agreement with the exact quantities. Furthermore, a broader assessment of the proposed parameterizations is given through an a priori evaluation of large-eddy simulation (LES) data from the first GEWEX Atmospheric Boundary Layer Study (GABLS). The shear-based parameterizations outperform many existing models in predicting turbulent mixing in the SABL. The results of this study provide a framework for improved representation of the SABL in operational models.


1972 ◽  
Vol 56 (2) ◽  
pp. 337-351 ◽  
Author(s):  
W. P. Jones ◽  
B. E. Launder

An experimental study of asymptotic sink-flow turbulent boundary layers is reported. Three levels of acceleration corresponding to values of the acceleration parameter K of 1·5 × 10−6, 2·5 × 10×6 and 3·0 × 10×6 have been examined. In addition to mean velocity profiles, measurements have been obtained of the profiles of longitudinal turbulence intensity, and, for the lowest value of K, of the lateral and transverse components as well. Measurements at selected positions in the boundary layer of the power spectral density indicate that none of the boundary layers exhibit an inertial subrange; for the steepest acceleration, in particular, throughout the boundary layer the spectrum shapes are similar in form to those reported within the viscous sublayer of a high Reynolds number turbulent flow.


2016 ◽  
Vol 73 (4) ◽  
pp. 1815-1840 ◽  
Author(s):  
Peter P. Sullivan ◽  
Jeffrey C. Weil ◽  
Edward G. Patton ◽  
Harmen J. J. Jonker ◽  
Dmitrii V. Mironov

Abstract The nighttime high-latitude stably stratified atmospheric boundary layer (SBL) is computationally simulated using high–Reynolds number large-eddy simulation on meshes varying from 2003 to 10243 over 9 physical hours for surface cooling rates Cr = [0.25, 1] K h−1. Continuous weakly stratified turbulence is maintained for this range of cooling, and the SBL splits into two regions depending on the location of the low-level jet (LLJ) and . Above the LLJ, turbulence is very weak and the gradient Richardson number is nearly constant: . Below the LLJ, small scales are dynamically important as the shear and buoyancy frequencies vary with mesh resolution. The heights of the SBL and Ri noticeably decrease as the mesh is varied from 2003 to 10243. Vertical profiles of the Ozmidov scale show its rapid decrease with increasing , with over a large fraction of the SBL for high cooling. Flow visualization identifies ubiquitous warm–cool temperature fronts populating the SBL. The fronts span a large vertical extent, tilt forward more so as the surface cooling increases, and propagate coherently. In a height–time reference frame, an instantaneous vertical profile of temperature appears intermittent, exhibiting a staircase pattern with increasing distance from the surface. Observations from CASES-99 also display these features. Conditional sampling based on linear stochastic estimation is used to identify coherent structures. Vortical structures are found upstream and downstream of a temperature front, similar to those in neutrally stratified boundary layers, and their dynamics are central to the front formation.


2013 ◽  
Vol 70 (11) ◽  
pp. 3397-3414 ◽  
Author(s):  
Jielun Sun ◽  
Donald H. Lenschow ◽  
Larry Mahrt ◽  
Carmen Nappo

Abstract Relationships among the horizontal pressure gradient, the Coriolis force, and the vertical momentum transport by turbulent fluxes are investigated using data collected from the 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99). Wind toward higher pressure (WTHP) adjacent to the ground occurred about 50% of the time. For wind speed at 5 m above the ground stronger than 5 m s−1, WTHP occurred about 20% of the time. Focusing on these moderate to strong wind cases only, relationships among horizontal pressure gradients, Coriolis force, and vertical turbulent transport in the momentum balance are investigated. The magnitude of the downward turbulent momentum flux consistently increases with height under moderate to strong winds, which results in the vertical convergence of the momentum flux and thus provides a momentum source and allows WTHP. In the along-wind direction, the horizontal pressure gradient is observed to be well correlated with the quadratic wind speed, which is demonstrated to be an approximate balance between the horizontal pressure gradient and the vertical convergence of the turbulent momentum flux. That is, antitriptic balance occurs in the along-wind direction when the wind is toward higher pressure. In the crosswind direction, the pressure gradient varies approximately linearly with wind speed and opposes the Coriolis force, suggesting the importance of the Coriolis force and approximate geotriptic balance of the airflow. A simple one-dimensional planetary boundary layer eddy diffusivity model demonstrates the possibility of wind directed toward higher pressure for a baroclinic boundary layer and the contribution of the vertical turbulent momentum flux to this phenomenon.


2015 ◽  
Vol 779 ◽  
pp. 371-389 ◽  
Author(s):  
M. Vallikivi ◽  
M. Hultmark ◽  
A. J. Smits

Measurements are presented in zero-pressure-gradient, flat-plate, turbulent boundary layers for Reynolds numbers ranging from $\mathit{Re}_{{\it\tau}}=2600$ to $\mathit{Re}_{{\it\tau}}=72\,500$ ($\mathit{Re}_{{\it\theta}}=8400{-}235\,000$). The wind tunnel facility uses pressurized air as the working fluid, and in combination with MEMS-based sensors to resolve the small scales of motion allows for a unique investigation of boundary layer flow at very high Reynolds numbers. The data include mean velocities, streamwise turbulence variances, and moments up to 10th order. The results are compared to previously reported high Reynolds number pipe flow data. For $\mathit{Re}_{{\it\tau}}\geqslant 20\,000$, both flows display a logarithmic region in the profiles of the mean velocity and all even moments, suggesting the emergence of a universal behaviour in the statistics at these high Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document