scholarly journals On reconstruction of turbulent momentum flux in the atmospheric boundary layer under strong wind and hurricane conditions from measurements of sea surface microwave backscatter cross section on orthogonal polarization

Author(s):  
Yu.I. Troitskaya ◽  
◽  
V.I. Abramov ◽  
A.V. Ermoshkin ◽  
E.M. Zuikova ◽  
...  
Author(s):  
Roddam Narasimha ◽  
S. Rudra Kumar ◽  
A Prabhu ◽  
S.V Kailas

We propose here a novel method of analysing turbulent momentum flux signals. The data for the analysis come from a nearly neutral atmospheric boundary layer and are taken at a height of 4 m above ground corresponding to 1.1×10 5 wall units, within the log layer for the mean velocity. The method of analysis involves examining the instantaneous flux profiles that exceed a given threshold, for which an optimum value is found to be 1 s.d. of the flux signal. It is found feasible to identify normalized flux variation signatures separately for positive and negative ‘flux events’—the sign being determined by that of the flux itself. Using these signatures, the flux signal is transformed to one of events characterized by the time of occurrence, duration and intensity. It is also found that both the average duration and the average time-interval between successive events are of order 1 s, about four orders of magnitude higher than a wall unit in time. This episodic description of the turbulence flux in the time domain enables us to identify separately productive, counter-productive and idle periods (accounting, respectively, for 36, 15 and 49% of the time), taking as criterion the generation of the momentum flux. A ‘burstiness’ index of 0.72 is found for the data. Comparison with laboratory data indicates higher (/lower) ejection (/sweep) quadrant occupancy but lower (/higher) contributions to flux from the ejection (/sweep) quadrant at the high Reynolds numbers of the atmospheric boundary layer. Possible connections with the concept of active and passive motion in a turbulent boundary layer are briefly discussed.


2007 ◽  
Vol 16 (4) ◽  
pp. 367-373 ◽  
Author(s):  
Rostislav Kouznetsov ◽  
Valerii F. Kramar ◽  
Margarita A. Kallistratova

1996 ◽  
Vol 14 (9) ◽  
pp. 986-1015 ◽  
Author(s):  
L. Eymard ◽  
S. Planton ◽  
P. Durand ◽  
C. Le Visage ◽  
P. Y. Le Traon ◽  
...  

Abstract. The SEMAPHORE (Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale) experiment has been conducted from June to November 1993 in the Northeast Atlantic between the Azores and Madeira. It was centered on the study of the mesoscale ocean circulation and air-sea interactions. The experimental investigation was achieved at the mesoscale using moorings, floats, and ship hydrological survey, and at a smaller scale by one dedicated ship, two instrumented aircraft, and surface drifting buoys, for one and a half month in October-November (IOP: intense observing period). Observations from meteorological operational satellites as well as spaceborne microwave sensors were used in complement. The main studies undertaken concern the mesoscale ocean, the upper ocean, the atmospheric boundary layer, and the sea surface, and first results are presented for the various topics. From data analysis and model simulations, the main characteristics of the ocean circulation were deduced, showing the close relationship between the Azores front meander and the occurrence of Mediterranean water lenses (meddies), and the shift between the Azores current frontal signature at the surface and within the thermocline. Using drifting buoys and ship data in the upper ocean, the gap between the scales of the atmospheric forcing and the oceanic variability was made evident. A 2 °C decrease and a 40-m deepening of the mixed layer were measured within the IOP, associated with a heating loss of about 100 W m-2. This evolution was shown to be strongly connected to the occurrence of storms at the beginning and the end of October. Above the surface, turbulent measurements from ship and aircraft were analyzed across the surface thermal front, showing a 30% difference in heat fluxes between both sides during a 4-day period, and the respective contributions of the wind and the surface temperature were evaluated. The classical momentum flux bulk parameterization was found to fail in low wind and unstable conditions. Finally, the sea surface was investigated using airborne and satellite radars and wave buoys. A wave model, operationally used, was found to get better results compared with radar and wave-buoy measurements, when initialized using an improved wind field, obtained by assimilating satellite and buoy wind data in a meteorological model. A detailed analysis of a 2-day period showed that the swell component, propagating from a far source area, is underestimated in the wave model. A data base has been created, containing all experimental measurements. It will allow us to pursue the interpretation of observations and to test model simulations in the ocean, at the surface and in the atmospheric boundary layer, and to investigate the ocean-atmosphere coupling at the local and mesoscales.


2004 ◽  
Vol 61 (24) ◽  
pp. 3049-3064 ◽  
Author(s):  
Isaac Ginis ◽  
Alexander P. Khain ◽  
Elena Morozovsky

Abstract A model of the atmospheric boundary layer (BL) is presented that explicitly calculates a two-way interaction of the background flow and convective motions. The model is utilized for investigation of the formation of large eddies (roll vortices) and their effects on the structure of the marine boundary layer under conditions resembling those of tropical cyclones. It is shown that two main factors controlling the formation of large eddies are the magnitude of the background wind speed and air humidity, determining the cloud formation and latent heat release. When the wind speed is high enough, a strong vertical wind shear develops in the lower part of the BL, which triggers turbulent mixing and the formation of a mixed layer. As a result, the vertical profiles of velocity, potential temperature, and mixing ratio in the background flow are modified to allow for the development of large eddies via dynamic instability. Latent heat release in clouds was found to be the major energy source of large eddies. The cloud formation depends on the magnitude of air humidity. The most important manifestation of the effects of large eddies is a significant increase of the near-surface wind speed and evaporation from the sea surface. For strong wind conditions, the increase of the near-surface speed can exceed 10 m s−1 and evaporation from the sea surface can double. These results demonstrate an important role large eddies play in the formation of BL structure in high wind speeds. Inclusion of these effects in the BL parameterizations of tropical cyclone models may potentially lead to substantial improvements in the prediction of storm intensity.


2015 ◽  
Vol 72 (5) ◽  
pp. 1713-1726 ◽  
Author(s):  
Jordan M. Wilson ◽  
Subhas K. Venayagamoorthy

Abstract In this study, shear-based parameterizations of turbulent mixing in the stable atmospheric boundary layer (SABL) are proposed. A relevant length-scale estimate for the mixing length of the turbulent momentum field is constructed from the turbulent kinetic energy and the mean shear rate S as . Using observational data from two field campaigns—the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment and the 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99)— is shown to have a strong correlation with . The relationship between and corresponds to the ratio of the magnitude of the tangential components of the turbulent momentum flux tensor to , known as stress intensity ratio, . The field data clearly show that is linked to stability. The stress intensity ratio also depends on the flow energetics that can be assessed using a shear-production Reynolds number, , where P is shear production of turbulent kinetic energy and is the kinematic viscosity. This analysis shows that high mixing rates can indeed persist at strong stability. On this basis, shear-based parameterizations are proposed for the eddy diffusivity for momentum, , and eddy diffusivity for heat, , showing remarkable agreement with the exact quantities. Furthermore, a broader assessment of the proposed parameterizations is given through an a priori evaluation of large-eddy simulation (LES) data from the first GEWEX Atmospheric Boundary Layer Study (GABLS). The shear-based parameterizations outperform many existing models in predicting turbulent mixing in the SABL. The results of this study provide a framework for improved representation of the SABL in operational models.


2014 ◽  
Vol 52 (2) ◽  
pp. 125-141 ◽  
Author(s):  
R. L. Raddatz ◽  
R. J. Galley ◽  
B. G. Else ◽  
T. N. Papakyriakou ◽  
M. G. Asplin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document