Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: a multi-proxy perspective

Author(s):  
Harry J Dowsett ◽  
Marci M Robinson

The Mid-Pliocene is the most recent interval of sustained global warmth, which can be used to examine conditions predicted for the near future. An accurate spatial representation of the low-latitude Mid-Pliocene Pacific surface ocean is necessary to understand past climate change in the light of forecasts of future change. Mid-Pliocene sea surface temperature (SST) anomalies show a strong contrast between the western equatorial Pacific (WEP) and eastern equatorial Pacific (EEP) regardless of proxy (faunal, alkenone and Mg/Ca). All WEP sites show small differences from modern mean annual temperature, but all EEP sites show significant positive deviation from present-day temperatures by as much as 4.4°C. Our reconstruction reflects SSTs similar to modern in the WEP, warmer than modern in the EEP and eastward extension of the WEP warm pool. The east–west equatorial Pacific SST gradient is decreased, but the pole to equator gradient does not change appreciably. We find it improbable that increased greenhouse gases (GHG) alone would cause such a heterogeneous warming and more likely that the cause of Mid-Pliocene warmth is a combination of several forcings including both increased meridional heat transport and increased GHG.

2020 ◽  
Author(s):  
Gerald Rustic ◽  
Athanasios Koutavas ◽  
Thomas Marchitto

<p>Sea surface temperatures in the eastern equatorial Pacific exert powerful influence on the climate beyond the tropics through strong atmosphere-ocean coupling. Records of eastern Pacific sea surface temperatures are of vital importance for identifying the linkages between short-term climate variability and long-term climate trends. Here we reconstruct eastern equatorial Pacific sea surface temperature and salinity from paired trace metal and stable isotope analyses in foraminifera from a sediment core near the Galápagos Islands. Sea surface temperatures are correlated with reconstructed Northern and Southern hemisphere temperature records suggesting a common origin. We propose that this temperature signal originates in the extra-tropics and is transmitted to the eastern Pacific surface via its source waters. We find exceptions to this cooling during the Little Ice Age and during the last century, where notable sea surface temperature increases are observed. We calculate δ<sup>18</sup>O<sub>sw </sub>from paired stable isotope and trace element analyses and derive salinity, which reveals a significant trend toward fresher surface waters in the eastern equatorial Pacific. The overall trend toward cooler and fresher sea surface conditions is consistent with longer-term trends from both the Eastern and Western Pacific.</p>


1998 ◽  
Vol 43 (S1) ◽  
pp. 89-89
Author(s):  
G. R. Min ◽  
F. W. Taylor ◽  
J. Recy ◽  
G. S. Burr ◽  
R. L. Edwards ◽  
...  

2004 ◽  
Vol 34 (3) ◽  
pp. 643-655 ◽  
Author(s):  
Hein Zelle ◽  
Gerrian Appeldoorn ◽  
Gerrit Burgers ◽  
Geert Jan van Oldenborgh

Abstract The time dependence of the local relation between sea surface temperature (SST) and thermocline depth in the central and eastern equatorial Pacific Ocean is analyzed for the period 1990–99, using subsurface temperature measurements from the Tropical Atmosphere–Ocean Array/Triangle Trans-Ocean Buoy Network (TAO/TRITON) buoy array. Thermocline depth anomalies lead SST anomalies in time, with a longitude-dependent delay ranging from 2 weeks in the eastern Pacific to 1 year in the central Pacific. The lagged correlation between thermocline depth and SST is strong, ranging from r > 0.9 in the east to r ≈ 0.6 at 170°W. Time-lagged correlations between thermocline depth and subsurface temperature anomalies indicate vertical advection of temperature anomalies from the thermocline to the surface in the eastern Pacific. The measurements are compared with the results of forced OGCM and linear model experiments. Using model results, it is shown that the delay between thermocline depth and SST is caused mainly by upwelling and mixing between 140° and 90°W. Between 170°E and 140°W the delay has a different explanation: thermocline depth anomalies travel to the eastern Pacific, where upwelling creates SST anomalies that in turn cause anomalous wind in the central Pacific. SST is then influenced by these wind anomalies.


Sign in / Sign up

Export Citation Format

Share Document