El Niño–Southern Oscillation, Pliocene climate and equifinality

Author(s):  
Sarah G Bonham ◽  
Alan M Haywood ◽  
Daniel J Lunt ◽  
Mathew Collins ◽  
Ulrich Salzmann

It has been suggested that, during the Pliocene ( ca 5–1.8 Ma), an El Niño state existed as a permanent rather than an intermittent feature; that is, the tropical Pacific Ocean was characterized by a much weaker east–west gradient than today. One line of inquiry used to investigate this idea relates modern El Niño teleconnections to Pliocene proxy data by comparing regional differences in precipitation and surface temperature with climate patterns associated with present-day El Niño events, assuming that agreement between Pliocene data and observations of modern El Niño events supports this interpretation. Here, we examine this assumption by comparing outputs from a suite of Mid-Pliocene climate simulations carried out with the UK Met Office climate model. Regional patterns of climate change associated with changes in model boundary conditions are compared with observed El Niño–Southern Oscillation teleconnection patterns. Our results indicate that many of the proposed ‘permanent El Niño’ surface temperature and precipitation patterns are observable in Mid-Pliocene climate simulations even when they display variability in tropical Pacific sea surface temperatures (SSTs) or when forced with a modern east–west SST gradient. Our experiments highlight the possibility that the same outcome may be achieved through different initial conditions (equifinality); an important consideration for reconstructed patterns of regional Mid-Pliocene climate.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jialin Lin ◽  
Taotao Qian

AbstractThe El Nino-Southern Oscillation (ENSO) is the dominant interannual variability of Earth’s climate system and plays a central role in global climate prediction. Outlooks of ENSO and its impacts often follow a two-tier approach: predicting ENSO sea surface temperature anomaly in tropical Pacific and then predicting its global impacts. However, the current picture of ENSO global impacts widely used by forecasting centers and atmospheric science textbooks came from two earliest surface station datasets complied 30 years ago, and focused on the extreme phases rather than the whole ENSO lifecycle. Here, we demonstrate a new picture of the global impacts of ENSO throughout its whole lifecycle based on the rich latest satellite, in situ and reanalysis datasets. ENSO impacts are much wider than previously thought. There are significant impacts unknown in the previous picture over Europe, Africa, Asia and North America. The so-called “neutral years” are not neutral, but are associated with strong sea surface temperature anomalies in global oceans outside the tropical Pacific, and significant anomalies of land surface air temperature and precipitation over all the continents.


2020 ◽  
Vol 16 (3) ◽  
pp. 885-910
Author(s):  
Brett Metcalfe ◽  
Bryan C. Lougheed ◽  
Claire Waelbroeck ◽  
Didier M. Roche

Abstract. A complete understanding of past El Niño–Southern Oscillation (ENSO) fluctuations is important for the future predictions of regional climate using climate models. One approach to reconstructing past ENSO dynamics uses planktonic foraminifera as recorders of past climate to assess past spatio-temporal changes in upper ocean conditions. In this paper, we utilise a model of planktonic foraminifera populations, Foraminifera as Modelled Entities (FAME), to forward model the potential monthly average δ18Oc and temperature signal proxy values for Globigerinoides ruber, Globigerinoides sacculifer, and Neogloboquadrina dutertrei from input variables covering the period of the instrumental record. We test whether the modelled foraminifera population δ18Oc and Tc associated with El Niño events statistically differ from the values associated with other climate states. Provided the assumptions of the model are correct, our results indicate that the values of El Niño events can be differentiated from other climate states using these species. Our model computes the proxy values of foraminifera in the water, suggesting that, in theory, water locations for a large portion of the tropical Pacific should be suitable for differentiating El Niño events from other climate states. However, in practice it may not be possible to differentiate climate states in the sediment record. Specifically, comparison of our model results with the sedimentological features of the Pacific Ocean shows that a large portion of the hydrographically/ecologically suitable water regions coincide with low sediment accumulation rate at the sea floor and/or of sea floor that lie below threshold water depths for calcite preservation.


2016 ◽  
Vol 17 (2) ◽  
pp. 65
Author(s):  
Ardila Yananto ◽  
Rini Mariana Sibarani

IntisariBeberapa lembaga riset dunia dan badan-badan meteorologi beberapa negara di dunia menyatakan adanya kejadian El Nino Tahun 2015 terus berlanjut hingga tahun 2016. Adanya kejadian El Nino tersebut secara umum akan mempengarui intensitas curah hujan di sebagian besar wilayah Indonesia termasuk wilayah Jabodetabek. Analisis kejadian El Nino Tahun 2015/2016 dilakukan dengan menganalisis nilai NINO 3.4 SST Index, Southern Oscillation Index (SOI), Indian Ocean Dipole (IOD), pola sebaran suhu permukaan laut (Sea Surface Temperature) dan juga gradient wind di Samudra Pasifik Tropis. Sedangkan Analisis Curah Hujan dilakukan dengan menggunakan data TRMM (Tropical Rainfall Measuring Mission). Dari penelitian ini dapat diketahui bahwa berdasarkan parameter NINO 3.4 SST Index dan Southern Oscillation Index (SOI) pada pertengahan Tahun 2015 hingga awal Tahun 2016 telah terjadi fenomana El Nino pada level kuat, adanya peningkatan suhu permukaan laut di sebagian besar wilayah Indonesia sejak Bulan November 2015 yang diikuti dengan penurunan indeks Dipole Mode hingga menjadi bernilai negatif (-) sejak awal Tahun 2016 serta dengan adanya peralihan Angin Muson Timur ke Angin Muson Barat di wilayah Indonesia telah menyebabkan peningkatan curah hujan yang cukup signifikan dalam batas normal di wilayah Jabodetabek pada puncak musim hujan Tahun 2015/2016 (November 2015 - Februari 2016) walaupun pada Bulan November 2015 hingga Februari 2016 tersebut masih berada pada level El Nino kuat.   AbstractVarious research institutions in the world that work in the field of Meteorology and Climatology predicted an El Nino events in 2015 continued into 2016. The El Nino events phenomenon in general will affect to intensity of the rainfall in most parts of Indonesia, including the Greater Jakarta area. El Nino events phenomenon Analysis by Nino 3.4 SST index, Southern Oscillation Index (SOI), Indian Ocean Dipole (IOD), Sea Surface Temperature (SST) and gradient wind in the Tropical Pacific Ocean. While rainfall intensity analysis using TRMM (Tropical Rainfall Measuring Mission) data. From this research it is known that based on the parameters NINO 3.4 SST index and the Southern Oscillation Index (SOI), it is known that there was a strong El Nino event occurred in mid-2015 to early 2016, the increase of sea surface temperature in most parts of Indonesia since November 2015 followed by declines Dipole Mode Index to be negative (-) since the beginning 2016 as well as the shift East monsoon to West monsoon in Indonesia has led to significant rainfall increased within normal limits in the Greater Jakarta area at the peak period of the rainy season 2015/2016 (November 2015 - February 2016) although in November 2015 until February 2016 El Nino event is still at the strong level.  


2021 ◽  
Author(s):  
◽  
Thomas Cain

The El Nino Southern Oscillation (ENSO) has long been an influential climate and weather driver for many regions. Many studies have examined the variability of the phases of ENSO, leading to discovery of a separate mode of El Nino dubbed the El Nino Modoki, featuring a tripole Walker circulation. However, few studies have examined the variability of El Nino with Modoki separated from regular El Nino events. The goals of this study were to demonstrate that the El Nino signal was stronger separate from Modoki (thus leading to higher predictability), and to examine the effect of the Modoki on both a national and regional level, showing the connection between other teleconnections such as the Pacific North American teleconnection (PNA), the Arctic Oscillation (AO), and the North American Oscillation teleconnection (NAO). Using NCEP/NCAR composites, conventional El Nino events were found to have a stronger signal, with persistent features being easier to identify. Similarly, the Modoki showed a pattern thatmilar but different to the regular El Nino. Using New York State for the area of regional analysis, all ENSO phases were found to modify the effect of the PNA, but the effect was different depending on location. Both of these results indicate that it is possible to generate a clearer picture of the impacts of ENSO by properly classifying these events


2005 ◽  
Vol 18 (10) ◽  
pp. 1566-1574 ◽  
Author(s):  
A. B. Potgieter ◽  
G. L. Hammer ◽  
H. Meinke ◽  
R. C. Stone ◽  
L. Goddard

Abstract The El Niño–Southern Oscillation (ENSO) phenomenon significantly impacts rainfall and ensuing crop yields in many parts of the world. In Australia, El Niño events are often associated with severe drought conditions. However, El Niño events differ spatially and temporally in their manifestations and impacts, reducing the relevance of ENSO-based seasonal forecasts. In this analysis, three putative types of El Niño are identified among the 24 occurrences since the beginning of the twentieth century. The three types are based on coherent spatial patterns (“footprints”) found in the El Niño impact on Australian wheat yield. This bioindicator reveals aligned spatial patterns in rainfall anomalies, indicating linkage to atmospheric drivers. Analysis of the associated ocean–atmosphere dynamics identifies three types of El Niño differing in the timing of onset and location of major ocean temperature and atmospheric pressure anomalies. Potential causal mechanisms associated with these differences in anomaly patterns need to be investigated further using the increasing capabilities of general circulation models. Any improved predictability would be extremely valuable in forecasting effects of individual El Niño events on agricultural systems.


2010 ◽  
Vol 6 (4) ◽  
pp. 525-530 ◽  
Author(s):  
A. A. Tsonis ◽  
K. L. Swanson ◽  
G. Sugihara ◽  
P. A. Tsonis

Abstract. Climate change has been implicated in the success and downfall of several ancient civilizations. Here we present a synthesis of historical, climatic, and geological evidence that supports the hypothesis that climate change may have been responsible for the slow demise of Minoan civilization. Using proxy ENSO and precipitation reconstruction data in the period 1650–1980 we present empirical and quantitative evidence that El Nino causes drier conditions in the area of Crete. This result is supported by modern data analysis as well as by model simulations. Though not very strong, the ENSO-Mediterranean drying signal appears to be robust, and its overall effect was accentuated by a series of unusually strong and long-lasting El Nino events during the time of the Minoan decline. Indeed, a change in the dynamics of the El Nino/Southern Oscillation (ENSO) system occurred around 3000 BC, which culminated in a series of strong and frequent El Nino events starting at about 1450 BC and lasting for several centuries. This stressful climatic trend, associated with the gradual demise of the Minoans, is argued to be an important force acting in the downfall of this classic and long-lived civilization.


Author(s):  
Lino Naranjo Díaz

Almost all the studies performed during the past century have shown that drought is not the result of a single cause. Instead, it is the result of many factors varying in nature and scales. For this reason, researchers have been focusing their studies on the components of the climate system to explain a link between patterns (regional and global) of climatic variability and drought. Some drought patterns tend to recur frequently, particularly in the tropics. One such pattern is the El Niño and Southern Oscillation (ENSO). This chapter explains the main characteristics of the ENSO and its data forms, and how this phenomenon is related to the occurrence of drought in the world regions. Originally, the name El Niño was coined in the late 1800s by fishermen along the coast of Peru to refer to a seasonal invasion of south-flowing warm currents of the ocean that displaced the north-flowing cold currents in which they normally fished. The invasion of warm water disrupts both the marine food chain and the economies of coastal communities that are based on fishing and related industries. Because the phenomenon peaks around the Christmas season, the fishermen who first observed it named it “El Niño” (“the Christ Child”). In recent decades, scientists have recognized that El Niño is linked with other shifts in global weather patterns (Bjerknes, 1969; Wyrtki, 1975; Alexander, 1992; Trenberth, 1995; Nicholson and Kim, 1997). The recurring period of El Niño varies from two to seven years. The intensity and duration of the event vary too and are hard to predict. Typically, the duration of El Niño ranges from 14 to 22 months, but it can also be much longer or shorter. El Niño often begins early in the year and peaks in the following boreal winter. Although most El Niño events have many features in common, no two events are exactly the same. The presence of El Niño events during historical periods can be detected using climatic data interpreted from the tree ring analysis, sediment or ice cores, coral reef samples, and even historical accounts from early settlers.


2015 ◽  
Vol 11 (10) ◽  
pp. 1325-1333 ◽  
Author(s):  
K. Schollaen ◽  
C. Karamperidou ◽  
P. Krusic ◽  
E. Cook ◽  
G. Helle

Abstract. Indonesia's climate is dominated by the equatorial monsoon system, and has been linked to El Niño-Southern Oscillation (ENSO) events that often result in extensive droughts and floods over the Indonesian archipelago. In this study we investigate ENSO-related signals in a tree-ring δ18O record (1900–2007) of Javanese teak. Our results reveal a clear influence of Warm Pool (central Pacific) El Niño events on Javanese tree-ring δ18O, and no clear signal of Cold Tongue (eastern Pacific) El Niño events. These results are consistent with the distinct impacts of the two ENSO flavors on Javanese precipitation, and illustrate the importance of considering ENSO flavors when interpreting palaeoclimate proxy records in the tropics, as well as the potential of palaeoclimate proxy records from appropriately selected tropical regions for reconstructing past variability of. ENSO flavors.


Sign in / Sign up

Export Citation Format

Share Document