Smoothed particle hydrodynamics simulation of shear-induced powder migration in injection moulding

Author(s):  
David Kauzlarić ◽  
Lars Pastewka ◽  
Hagen Meyer ◽  
Richard Heldele ◽  
Michael Schulz ◽  
...  

We present the application of the smoothed particle hydrodynamics (SPH) discretization scheme to Phillips’ model for shear-induced particle migration in concentrated suspensions. This model provides an evolution equation for the scalar mean volume fraction of idealized spherical solid particles of equal diameter which is discretized by the SPH formalism. In order to obtain a discrete evolution equation with exact conservation properties we treat in fact the occupied volume of the solid particles as the degree of freedom for the fluid particles. We present simulation results in two- and three-dimensional channel flow. The two-dimensional results serve as a verification by a comparison to analytic solutions. The three-dimensional results are used for a comparison with experimental measurements obtained from computer tomography of injection moulded ceramic microparts. We observe the best agreement of measurements with snapshots of the transient simulation for a ratio D c / D η =0.1 of the two model parameters.

2007 ◽  
Vol 04 (04) ◽  
pp. 671-691 ◽  
Author(s):  
C. E. ZHOU ◽  
G. R. LIU ◽  
K. Y. LOU

This paper presents three-dimensional computational simulations of the hypervelocity impact (HVI) using standard smoothed particle hydrodynamics (SPH). The classic Taylor-Bar-Impact test is revisited with the focus on the variation of results corresponding to the different model parameters in the SPH implementation. The second example involves both normal and oblique HVIs of a sphere on the thin plate, producing large deformation of structures. Based on original experimental results and some numerical results reported previously, some comparisons are also made, in the hope of providing informative data on appropriate SPH implementation options for the software being developed. The results obtained show that the current SPH procedure is well suited for the HVI problems.


Author(s):  
Ranvir Dhillon ◽  
Moustafa El-Gindy ◽  
Rustam Ali ◽  
David Philipps ◽  
Fredrik Öijer ◽  
...  

The rapid progression of computational power and development of non-mesh particle modeling techniques provides solutions to problems which are not accurately modeled using traditional finite element analysis techniques. The field of soft soil modeling has been pressing on in recent years and the smoothed particle hydrodynamics (SPH) modeling method in PAM-CRASH provides opportunity for further advancement in accuracy. This research focuses on the development of soft soil models using SPH with verification using pressure-sinkage and shear strength criterion. Soil model parameters such as geometry and contact model are varied to determine the effect of the parameters on the behaviour of the soft soil and relationships are developed. The developed virtual soil models are compared against existing soils to determine which soils are accurately modeled and further refinements are made to validate the models with existing empirical data.


2020 ◽  
Vol 17 (10) ◽  
pp. 2050009
Author(s):  
Sisi Tan ◽  
Mingze Xu

Numerical modeling of whole blood still faces great challenges although significant progress has been achieved in recent decades, because of the large differences of physical and geometric properties among blood components, including red blood cells (RBCs), platelets (PLTs) and white blood cells (WBCs). In this work, we develop a three-dimensional (3D) smoothed particle hydrodynamics (SPH) model to study the whole blood in shear flow. The immersed boundary method (IBM) is used to deal with the interaction between the fluid and cells, which provides a possibility to model the RBCs, PLTs and WBCs simultaneously. The deformation of a small capsule, comparable to a PLT in size, is first examined to show the feasibility of SPH model for the PLTs’ behaviors. The motion of a single RBC in shear flow is then studied, and three typical modes, tank-treading, swinging and tumbling motions, are reproduced, which further confirm the reliability of the SPH model. After that, a simulation of the whole blood in shear flow is carried out, in which the margination trend is observed for both PLTs and WBC. This shows the capability of SPH model with IBM for the simulation of whole blood.


2019 ◽  
Vol 95 ◽  
pp. 02011
Author(s):  
Anisa Wulandari ◽  
R.R Dwinanti Rika ◽  
Jessica Sjah ◽  
Herr Soeryantono

Scouring Phenomenon directly occurs on materials due to the motion of water flow and water borne sediments that researchers in the world continue to investigate. Scouring are then continuously developed in Computational Fluid Dynamics (CFD) to be able to estimate scouring effects by analyzing interaction between fluid and solid. Water and solid interaction can be researched by realizing three dimensional numerical modeling (3D) using Smoothed Particle Hydrodynamics Method which is modeling and visualizing fluid behavior with a Lagrangian approach in particle scale (micro scale), a more particle approach realistic than the grid approach. Using this method, the results of each particle can be reviewed either by their property values or visually so that the results are obtained more representatives. One of the factors affecting fluid-solid modeling is spacing ratio between solid particle and fluid particle. To obtain the correct physical results, it is required to consider the influence of spacing ratio and the value of Stiffness Coefficient (Ks) needed.


Sign in / Sign up

Export Citation Format

Share Document