scholarly journals Solubility of CO 2 in [1- n -butylthiolanium][Tf 2 N]+toluene mixtures: liquid–liquid phase split separation and modelling

Author(s):  
Roberto I. Canales ◽  
Michael J. Lubben ◽  
Maria Gonzalez-Miquel ◽  
Joan F. Brennecke

Carbon dioxide has been shown to be an effective antisolvent gas for separating organic compounds from ionic liquids (ILs) by inducing a liquid–vapour to liquid–liquid–vapour transition. Using carbon dioxide, toluene can be separated from imidazolium, phosphonium and pyridinum cation-based ILs with the bis(trifluoromethylsulfonyl)imide anion, which is relatively hydrophobic and has a high toluene solubility. A new IL with relatively low viscosity is tested here for the same toluene separation process: 1- n -butylthiolanium bis(trifluoromethylsulfonyl)imide. Carbon dioxide solubility in binary and ternary systems containing toluene and 1- n -butylthiolanium bis(trifluoromethylsulfonyl)imide is measured at 298.15 and 313.15 K up to 7.4 MPa. Solubility behaviour in this IL is similar to imidazolium-based ILs with the same anion. However, phase split pressures are lower when 1- n -butylthiolanium bis (trifluoromethylsulfonyl)imide is used instead of 1- n -hexyl-3-methylimidazolium bis(trifluoromethylsu- lfonyl)imide at the same conditions of temperature and initial composition of toluene in the IL. Solubility data are modelled with the conductor-like screening model for real solvents combined with the Soave–Redlich–Kwong equation of state, which provides good qualitative results.

2021 ◽  
Vol 105 ◽  
pp. 103210
Author(s):  
Mariusz Zalewski ◽  
Tomasz Krawczyk ◽  
Agnieszka Siewniak ◽  
Aleksander Sobolewski

2006 ◽  
Vol 51 (2) ◽  
pp. 686-690 ◽  
Author(s):  
Elton Franceschi ◽  
Marcos H. Kunita ◽  
Adley F. Rubira ◽  
Edvani Curti Muniz ◽  
Marcos L. Corazza ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Helen R. Mazzer ◽  
José C. O. Santos ◽  
Vladimir F. Cabral ◽  
Claudio Dariva ◽  
Marcos H. Kunita ◽  
...  

High pressure phase behavior experimental data have been measured for the systems carbon dioxide (CO2) + 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] [PF6]) and carbon dioxide (CO2) + 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] [PF6]) + 1-amino-2-phenoxy-4-hydroxyanthraquinone (C.I. Disperse Red 60). Measurements were performed in the pressure up to 18 MPa and at the temperature (323 to 353 K). As reported in the literature, at higher concentrations of carbon dioxide the phase transition pressure increased very steeply. The experimental data for the binary and ternary systems were correlated with good agreement using the Peng-Robinson equation of state. The amount of water in phase behavior of the systems was evaluated.


The pressure-temperature-composition data for liquid-vapour equilibrium in the systems carbon dioxide-ethylene and carbon dioxide-propylene are given; the former system is shown to form a series of azeotropes. The plait-point curves and critical constants for the two series of mixtures have been determined.


2021 ◽  
pp. 1-17
Author(s):  
Azam Najafloo ◽  
Hossein Sakhaeinia

In this study, a thermodynamic model has been used to determine the solubility of carbon dioxide in an aqueous solution which is the combination of methyldiethanolamine (MDEA) and aminoethylethanolamine (AEEA). The physical equilibriums have been considered between the liquid and vapor phases and chemical equilibrium in the liquid phase. The SAFT-HR equation of state has been used to specify the fugacity coefficients of the components in the vapor phase. The liquid phase is considered as an electrolyte solution besides; the extended UNIQUAC has been applied to figure out the activity coefficients. The bubble point calculation has been used in this research. This method includes two main loops. Calculations related to chemical equilibrium are performed in the interior loop and the ones associated with phase equilibrium are done in the exterior loop. The solubility of carbon dioxide has been predicted by the optimized parameters of the model in the temperature range of 308.2–368.2 K. It has been calculated that the absolute average relative deviations of the model are 16.65, 19.33, 28.91 and 19.99 in the calculation of partial pressure of carbon dioxide in various loadings at the temperatures of 308.2, 328.2, 343.2 and 368.2 K.


Sign in / Sign up

Export Citation Format

Share Document