scholarly journals Cosmological implications of Higgs near-criticality

Author(s):  
J. R. Espinosa

The Standard Model electroweak (EW) vacuum, in the absence of new physics below the Planck scale, lies very close to the boundary between stability and metastability, with the last option being the most probable. Several cosmological implications of this so-called ‘near-criticality’ are discussed. In the metastable vacuum case, the main challenges that the survival of the EW vacuum faces during the evolution of the Universe are analysed. In the stable vacuum case, the possibility of implementing Higgs inflation is critically examined. This article is part of the Theo Murphy meeting issue ‘Higgs cosmology’.

2015 ◽  
Vol 30 (28n29) ◽  
pp. 1545001
Author(s):  
Fedor Bezrukov ◽  
Mikhail Shaposhnikov

After the Higgs boson has been discovered, the Standard Model of particle physics became a confirmed theory, potentially valid up to the Planck scale and allowing to trace the evolution of the Universe from inflationary stage till the present days. We discuss the relation between the results from the LHC and the inflationary cosmology. We given an overview of the Higgs inflation, and its relation to the possible metastability of the electroweak vacuum. A short overview of the bounds on the metastability of the electroweak vacuum in the models with inflation not related to the Higgs boson is presented.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Stefan Bißmann ◽  
Gudrun Hiller ◽  
Clara Hormigos-Feliu ◽  
Daniel F. Litim

AbstractWe investigate collider signatures of standard model extensions featuring vector-like leptons and a flavorful scalar sector. Such a framework arises naturally within asymptotically safe model building, which tames the UV behavior of the standard model towards the Planck scale and beyond. We focus on values of Yukawa couplings and masses which allow to explain the present data on the muon and electron anomalous magnetic moments. Using a CMS search based on $$77.4 \, \text {fb}^{-1}$$ 77.4 fb - 1 at the $$\sqrt{s}=13$$ s = 13  TeV LHC we find that flavorful vector-like leptons are excluded for masses below around 300 GeV if they are singlets under $$SU(2)_L$$ S U ( 2 ) L , and around 800 GeV if they are doublets. Exploiting the flavor-violating-like decays of the scalars, we design novel null test observables based on opposite sign opposite flavor invariant masses. These multi-lepton distributions allow to signal new physics and to extract mass hierarchies in reach of near-future searches at the LHC and the HL-LHC.


2019 ◽  
Vol 64 (8) ◽  
pp. 689
Author(s):  
V. M. Gorkavenko

Despite the undeniable success of the Standard Model of particle physics (SM), there are some phenomena (neutrino oscillations, baryon asymmetry of the Universe, dark matter, etc.) that SM cannot explain. This phenomena indicate that the SM have to be modified. Most likely, there are new particles beyond the SM. There are many experiments to search for new physics that can be can divided into two types: energy and intensity frontiers. In experiments of the first type, one tries to directly produce and detect new heavy particles. In experiments of the second type, one tries to directly produce and detect new light particles that feebly interact with SM particles. The future intensity frontier SHiP experiment (Search for Hidden Particles) at the CERN SPS is discussed. Its advantages and technical characteristics are given.


2016 ◽  
Vol 40 ◽  
pp. 1660075
Author(s):  
David Kawall

The Standard Model is incomplete and unable to explain the matter-antimatter asymmetry in the universe. Many extensions of the Standard Model predict new particles and interactions with additional [Formula: see text]-violating phases that can explain this imbalance. Electric dipole moments (EDMs) of fundamental particles, which are generated by [Formula: see text]-violating interactions, can be enhanced by many orders of magnitude by contributions from this new physics to a magnitude within reach of current and planned experiments. New approaches to EDM searches using storage rings, and their sensitivity to new physics are presented.


Author(s):  
C. Grojean

An elementary, weakly coupled and solitary Higgs boson allows one to extend the validity of the Standard Model up to very high energy, maybe as high as the Planck scale. Nonetheless, this scenario fails to fill the universe with dark matter and does not explain the matter–antimatter asymmetry. However, amending the Standard Model tends to destabilize the weak scale by large quantum corrections to the Higgs potential. New degrees of freedom, new forces, new organizing principles are required to provide a consistent and natural description of physics beyond the standard Higgs.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Avelino Vicente

Since 2013, the LHCb collaboration has reported on the measurement of several observables associated with b→s transitions, finding various deviations from their predicted values in the Standard Model. These include a set of deviations in branching ratios and angular observables, as well as in the observables RK and RK⁎, specially built to test the possible violation of Lepton Flavor Universality. Even though these tantalizing hints are not conclusive yet, the b→s anomalies have gained considerable attention in the flavor community. Here we review new physics models that address these anomalies and explore their possible connection to the dark matter of the Universe. After discussing some of the ideas introduced in these works and classifying the proposed models, two selected examples are presented in detail in order to illustrate the potential interplay between these two areas of current particle physics.


2013 ◽  
Vol 28 (04) ◽  
pp. 1330002 ◽  
Author(s):  
YONG TANG

The long-awaited Higgs particle H around 125 GeV has been observed at the LHC. Interpreting it as the Standard Model Higgs boson and if there is no new physics between electroweak and Planck scale, we then do not have a stable vacuum. Here, we give a brief review of the electroweak vacuum stability and some related theoretical issues in the Standard Model. Possible ways to save the stability are also discussed.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


Sign in / Sign up

Export Citation Format

Share Document