scholarly journals Anomalies in b→s Transitions and Dark Matter

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Avelino Vicente

Since 2013, the LHCb collaboration has reported on the measurement of several observables associated with b→s transitions, finding various deviations from their predicted values in the Standard Model. These include a set of deviations in branching ratios and angular observables, as well as in the observables RK and RK⁎, specially built to test the possible violation of Lepton Flavor Universality. Even though these tantalizing hints are not conclusive yet, the b→s anomalies have gained considerable attention in the flavor community. Here we review new physics models that address these anomalies and explore their possible connection to the dark matter of the Universe. After discussing some of the ideas introduced in these works and classifying the proposed models, two selected examples are presented in detail in order to illustrate the potential interplay between these two areas of current particle physics.

2019 ◽  
Vol 64 (8) ◽  
pp. 689
Author(s):  
V. M. Gorkavenko

Despite the undeniable success of the Standard Model of particle physics (SM), there are some phenomena (neutrino oscillations, baryon asymmetry of the Universe, dark matter, etc.) that SM cannot explain. This phenomena indicate that the SM have to be modified. Most likely, there are new particles beyond the SM. There are many experiments to search for new physics that can be can divided into two types: energy and intensity frontiers. In experiments of the first type, one tries to directly produce and detect new heavy particles. In experiments of the second type, one tries to directly produce and detect new light particles that feebly interact with SM particles. The future intensity frontier SHiP experiment (Search for Hidden Particles) at the CERN SPS is discussed. Its advantages and technical characteristics are given.


2021 ◽  
Vol 71 (1) ◽  
pp. 279-313
Author(s):  
Gaia Lanfranchi ◽  
Maxim Pospelov ◽  
Philip Schuster

At the dawn of a new decade, particle physics faces the challenge of explaining the mystery of dark matter, the origin of matter over antimatter in the Universe, the apparent fine-tuning of the electroweak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves New Physics at mass scales comparable to that of familiar matter—below the GeV scale but with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and existing data may even provide hints of this possibility. Emboldened by the lessons of the LHC, a vibrant experimental program to discover such physics is underway, guided by a systematic theoretical approach that is firmly grounded in the underlying principles of the Standard Model. We give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs, and we focus in particular on accelerator-based experiments.


2018 ◽  
Vol 33 (02) ◽  
pp. 1830003 ◽  
Author(s):  
John Ellis

The most important discovery in particle physics in recent years was that of the Higgs boson, and much effort is continuing to measure its properties, which agree obstinately with the Standard Model, so far. However, there are many reasons to expect physics beyond the Standard Model, motivated by the stability of the electroweak vacuum, the existence of dark matter and the origin of the visible matter in the Universe, neutrino physics, the hierarchy of mass scales in physics, cosmological inflation and the need for a quantum theory for gravity. Most of these issues are being addressed by the experiments during Run 2 of the LHC, and supersymmetry could help resolve many of them. In addition to the prospects for the LHC, I also review briefly those for direct searches for dark matter and possible future colliders.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Nobuchika Okada ◽  
Digesh Raut ◽  
Qaisar Shafi

AbstractTo address five fundamental shortcomings of the Standard Model (SM) of particle physics and cosmology, we propose a phenomenologically viable framework based on a $$U(1)_X \times U(1)_{PQ}$$ U ( 1 ) X × U ( 1 ) PQ extension of the SM, that we call “SMART U(1)$$_X$$ X ”. The $$U(1)_X$$ U ( 1 ) X gauge symmetry is a well-known generalization of the $$U(1)_{B-L}$$ U ( 1 ) B - L symmetry and $$U(1)_{PQ}$$ U ( 1 ) PQ is the global Peccei–Quinn (PQ) symmetry. Three right handed neutrinos are added to cancel $$U(1)_X$$ U ( 1 ) X related anomalies, and they play a crucial role in understanding the observed neutrino oscillations and explaining the observed baryon asymmetry in the universe via leptogenesis. Implementation of PQ symmetry helps resolve the strong CP problem and also provides axion as a compelling dark matter (DM) candidate. The $$U(1)_X$$ U ( 1 ) X gauge symmetry enables us to implement the inflection-point inflation scenario with $$H_{inf} \lesssim 2 \times 10^{7}$$ H inf ≲ 2 × 10 7  GeV, where $$H_{inf}$$ H inf is the value of Hubble parameter during inflation. This is crucial to overcome a potential axion domain wall problem as well as the axion isocurvature problem. The SMART U(1)$$_X$$ X framework can be successfully implemented in the presence of SU(5) grand unification, as we briefly show.


Author(s):  
John Ellis

The Standard Model of particle physics agrees very well with experiment, but many important questions remain unanswered, among them are the following. What is the origin of particle masses and are they due to a Higgs boson? How does one understand the number of species of matter particles and how do they mix? What is the origin of the difference between matter and antimatter, and is it related to the origin of the matter in the Universe? What is the nature of the astrophysical dark matter? How does one unify the fundamental interactions? How does one quantize gravity? In this article, I introduce these questions and discuss how they may be addressed by experiments at the Large Hadron Collider, with particular attention to the search for the Higgs boson and supersymmetry.


2019 ◽  
Vol 97 (12) ◽  
pp. 1270-1276
Author(s):  
P. Nayek ◽  
P. Maji ◽  
S. Sahoo

Motivated by the hints of lepton flavor violating (LFV) decays, we study Bd,s → μτ, Bs,d → τe, and τ– → e– + e+ + e– decays in [Formula: see text] model. These LFV decays present interesting patterns that may reveal the shape of new physics beyond the standard model. Considering the effect of both Z- and [Formula: see text]-mediated flavor-changing neutral current we calculate the branching ratios for these decays. We find the branching ratios [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text].


1990 ◽  
Vol 05 (20) ◽  
pp. 1543-1553 ◽  
Author(s):  
DAVID O. CALDWELL

The particle constituting probably more than 90% of the mass of the universe is unknown in the Standard Model of particle physics. Non-accelerator experiments, particularly those using Ge and Si detectors, and accelerator experiments, especially at SLC and LEP, have eliminated as dark matter wide classes of candidate particles. Examples are weak isodoublet neutrinos of mass ≳30 eV/c 2, sneutrinos, technibaryons, microcharged shadow matter, and probably Cosmions, which could both be dark matter and solve the solar neutrino problem.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Marcel Golz ◽  
Gudrun Hiller ◽  
Tom Magorsch

Abstract We analyze rare charm baryon decays within the standard model and beyond. We identify all null test observables in unpolarized Λc→ pℓ+ℓ−, ℓ = e, μ decays, and study the new physics sensitivities. We find that the longitudinal dilepton polarization fraction FL is sensitive to electromagnetic dipole couplings $$ {C}_7^{\left(\prime \right)} $$ C 7 ′ , and to the right-handed 4-fermion vector coupling $$ {C}_9^{\left(\prime \right)} $$ C 9 ′ . The forward-backward asymmetry, AFB, due to the GIM-suppression a standard model null test already, probes the left-handed axialvector 4-fermion coupling C10; its CP–asymmetry, $$ {A}_{\mathrm{FB}}^{\mathrm{CP}} $$ A FB CP probes CP-violating phases in C10. Physics beyond the standard model can induce branching ratios of dineutrino modes Λc→ pν$$ \overline{\nu} $$ ν ¯ up to a few times 10−5, and one order of magnitude smaller if lepton flavor universality is assumed, while standard model rates are negligible. Charged lepton flavor violation allows for striking signals into e±μ∓ final states, up to 10−6 branching ratios model-independently, and up to order 10−8 in leptoquark models. Related three-body baryon decays Ξc→ Σℓℓ, Ξc→ Λℓℓ and Ωc→ Ξℓℓ offer similar opportunities to test the standard model with |∆c| = |∆u| = 1 transitions.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


Sign in / Sign up

Export Citation Format

Share Document