scholarly journals Laboratory investigation of mechanisms for phase mixing in olivine + ferropericlase aggregates

Author(s):  
Harison S. Wiesman ◽  
Mark E. Zimmerman ◽  
David L. Kohlstedt

To investigate the role of grain boundary pinning and the mechanisms by which phase mixing occurs during deformation of polymineralic rocks, we conducted high-strain torsion experiments on samples consisting of olivine plus 30 vol% ferropericlase. Experiments were performed in a gas-medium deformation apparatus at 1524 K and 300 MPa. Samples were deformed to outer radius shear strains of up to γ ( R ) = 14.1. The value of the stress exponent and the small grain sizes of our samples indicate that our two-phase material deformed by dislocation-accommodated grain boundary sliding. In samples deformed to 1 <  γ  < 7, elongated clusters of ferropericlase grains form thin layers in the olivine matrix, and small grains of ferropericlase appear at olivine grain boundaries and three- and four-grain junctions. By γ  ≈ 14, a well-distributed mixture of small ferropericlase grains among the olivine grains developed. Microstructures exhibit similarities to both mechanical and chemical models proposed to describe the processes leading to phase mixing. Our results provide evidence for grain size reduction during phase mixing that results in a grain size significantly smaller than the value predicted by the single-phase recrystallization piezometer for olivine. Thus, phase mixing provides a mechanism for the persistent weakening of rocks that is important for developing and maintaining shear zones necessary for plate tectonics. This article is part of a discussion meeting issue ‘Earth dynamics and the development of plate tectonics'.

Solid Earth ◽  
2017 ◽  
Vol 8 (6) ◽  
pp. 1193-1209 ◽  
Author(s):  
James Gilgannon ◽  
Florian Fusseis ◽  
Luca Menegon ◽  
Klaus Regenauer-Lieb ◽  
Jim Buckman

Abstract. Establishing models for the formation of well-mixed polyphase domains in ultramylonites is difficult because the effects of large strains and thermo-hydro-chemo-mechanical feedbacks can obscure the transient phenomena that may be responsible for domain production. We use scanning electron microscopy and nanotomography to offer critical insights into how the microstructure of a highly deformed quartzo-feldspathic ultramylonite evolved. The dispersal of monomineralic quartz domains in the ultramylonite is interpreted to be the result of the emergence of synkinematic pores, called creep cavities. The cavities can be considered the product of two distinct mechanisms that formed hierarchically: Zener–Stroh cracking and viscous grain-boundary sliding. In initially thick and coherent quartz ribbons deforming by grain-size-insensitive creep, cavities were generated by the Zener–Stroh mechanism on grain boundaries aligned with the YZ plane of finite strain. The opening of creep cavities promoted the ingress of fluids to sites of low stress. The local addition of a fluid lowered the adhesion and cohesion of grain boundaries and promoted viscous grain-boundary sliding. With the increased contribution of viscous grain-boundary sliding, a second population of cavities formed to accommodate strain incompatibilities. Ultimately, the emergence of creep cavities is interpreted to be responsible for the transition of quartz domains from a grain-size-insensitive to a grain-size-sensitive rheology.


2017 ◽  
Author(s):  
James Gilgannon ◽  
Florian Fusseis ◽  
Luca Menegon ◽  
Klaus Regenauer-Lieb ◽  
Jim Buckman

Abstract. The dispersal of monomineralic quartz domains in a quartzofeldspathic ultramylonite is interpreted to be the result of the emergence of syn-kinematic pores, called creep cavities. The cavities can be considered the product of two distinct mechanisms that formed hierarchically: Zener-Stroh cracking and viscous grain boundary sliding. In initially thick and coherent quartz ribbons deforming by grain size-insensitive creep, cavities were generated by the Zener-Stroh mechanism on grain-boundaries aligned with the YZ plane of finite strain. The opening of creep cavities promoted the ingress of fluids to sites of low stress. The local addition of a fluid lowered the adhesion and cohesion of grain-boundaries and promoted viscous grain boundary sliding. With the increased contribution of viscous grain boundary sliding, a second population of cavities formed to accommodate strain incompatibilities. Ultimately, the emergence of creep cavities is interpreted to be responsible for the transition of quartz domains from a grain size-insensitive, to a grain size-sensitive rheology.


2020 ◽  
Author(s):  
Sören Tholen ◽  
Jolien Linckens

&lt;p&gt;Small grain size and a well-mixed phase assemblage are key features of upper mantle (ultra)mylonitic layers. In those layers, Zener pinning inhibits grain growth, which could lead to diffusion creep. This increases the strain rate for a given stress significantly. Prerequisite is phase mixing which can occur by dynamic recrystallization (dynRXS) plus grain boundary sliding (GBS), metamorphic or melt/fluid-rock reactions, creep cavitation plus nucleation, or by a combination of those processes. In order to get insights into the interplay of phase mixing and dynRXS we investigate microfabrics (EBSD, optical microscopy) displaying the transition from clasts to mixed assemblages. Samples are taken from the Lanzo peridotite shear zone (Italy).&lt;/p&gt;&lt;p&gt;Olivine dynamically recrystallizes from protomylonitic to ultramylonitic samples. Its grain size varies systematically between monomineralic (~20&amp;#181;m) and polymineralic layers&amp;#160;(~10&amp;#181;m). Olivine is the dominant mixing phase for both, dynamically recrystallizing orthopyroxene (ol~55vol.%) and clinopyroxene clasts (ol~45vol.%). In contrast, recrystallizing olivine clasts show little evidence of phase mixing. In phase mixtures, olivine neoblasts show weak (J-index ~1.8) C-Type and weak (J-Index ~1.5) B-type CPO&amp;#8217;s. Both types suggest the presence of water during deformation.&lt;/p&gt;&lt;p&gt;Isolated, equiaxial orthopyroxene clasts are present in all samples. DynRXS of opx starts in mylonites. Some clasts and tips of extensively elongated opx bands (max. axial ratios 1:50) are bordered by fine-grained (min. ECD~5&amp;#181;m) mixtures of olivine, opx &amp;#177;&amp;#160;anorthite/ cpx/ pargasite. Mixing intensities seem to depend on the connection to the olivine-rich matrix. Clast grain boundaries are highly lobate with indentations of secondary phases (mostly olivine). Opx neoblasts have no internal deformation and show large misorientations close to their host clast (misorientation angle &gt;45&amp;#176; at ~20&amp;#181;m distance). Their grain shape is either flat and elongated or equiaxial. Both shapes have lobate boundaries. Their CPO depends on the host clast orientation. In ultramylonites, opx bands disappeared completely.&lt;/p&gt;&lt;p&gt;Clinopyroxene porphyroclasts dynamically recrystallize in protomylonite to ultramylonite samples. Olivine is the dominant mixing phase (~45vol.%). Cpx mixed area grain sizes tend to be coarser (~10&amp;#181;m) than in corresponding opx areas (~6&amp;#181;m). Ultramylonitic cpx-ol assemblages have a higher mixing percentage (phase boundaries/grain boundaries ~70%) than mylonitic assemblages (~40%). In the mylonitic layers, clusters of cpx neoblasts form &amp;#8216;walls&amp;#8217; parallel to their host grain borders. Olivine neoblasts between these clusters show no CPO. The overall cpx CPO varies from [001] perpendicular and [010] parallel to the foliation with (J -Index ~2.5) to [100]&amp;#160;perpendicular and [001] parallel to the foliation (J-Index ~1.2).&lt;/p&gt;&lt;p&gt;Beside few thoroughly mixed areas, bands of cpx+ol and of opx+ol are still distinguishable in ultramylonitic layers. This suggests their origin to be dynamically recrystallized opx and cpx clasts. Therefore, phase mixing is assumed to occur simultaneously to clast recrystallization. Beside a small gradient of opx/cpx abundance depending on the distance from their host clast there is little evidence for phase mixing by dynRXS+GBS only. High abundances of olivine neoblasts at grain boundaries of recrystallizing clasts and their instant mixed assemblage with host phase neoblasts suggest phase mixing being strongly dependent on olivine nucleation during dynRXS of opx and cpx.&lt;/p&gt;


2021 ◽  
Vol 15 (9) ◽  
pp. 4589-4605
Author(s):  
Mark D. Behn ◽  
David L. Goldsby ◽  
Greg Hirth

Abstract. Viscous flow in ice is often described by the Glen flow law – a non-Newtonian, power-law relationship between stress and strain rate with a stress exponent n ∼ 3. The Glen law is attributed to grain-size-insensitive dislocation creep; however, laboratory and field studies demonstrate that deformation in ice can be strongly dependent on grain size. This has led to the hypothesis that at sufficiently low stresses, ice flow is controlled by grain boundary sliding, which explicitly incorporates the grain size dependence of ice rheology. Experimental studies find that neither dislocation creep (n ∼ 4) nor grain boundary sliding (n ∼ 1.8) have stress exponents that match the value of n ∼ 3 in the Glen law. Thus, although the Glen law provides an approximate description of ice flow in glaciers and ice sheets, its functional form is not explained by a single deformation mechanism. Here we seek to understand the origin of the n ∼ 3 dependence of the Glen law by using the “wattmeter” to model grain size evolution in ice. The wattmeter posits that grain size is controlled by a balance between the mechanical work required for grain growth and dynamic grain size reduction. Using the wattmeter, we calculate grain size evolution in two end-member cases: (1) a 1-D shear zone and (2) as a function of depth within an ice sheet. Calculated grain sizes match both laboratory data and ice core observations for the interior of ice sheets. Finally, we show that variations in grain size with deformation conditions result in an effective stress exponent intermediate between grain boundary sliding and dislocation creep, which is consistent with a value of n = 3 ± 0.5 over the range of strain rates found in most natural systems.


2001 ◽  
Author(s):  
J. Narayan ◽  
H. Wang ◽  
A. Kvit

Abstract We have synthesized nanocrystalline thin films of Cu, Zn, TiN, and WC having uniform grain size in the range of 5 to 100 nm. This was accomplished by introducing a couple of manolayers of materials with high surface and have a weak interaction with the substrate. The hardness measurements of these well-characterized specimens with controlled microstructures show that hardness initially increases with decreasing grain size following the well-known Hall-Petch relationship (H∝d−½). However, there is a critical grain size below which the hardness decreases with decreasing grain size. The experimental evidence for this softening of nanocrystalline materials at very small grain sizes (referred as reverse Hall-Petch effect) is presented for the first time. Most of the plastic deformation in our model is envisioned to be due to a large number of small “sliding events” associated with grain boundary shear or grain boundary sliding. This grain-size dependence of hardness can be used to create functionally gradient materials for improved adhesion and wear among other improved properties.


1993 ◽  
Vol 57 (386) ◽  
pp. 55-66 ◽  
Author(s):  
D. Brown ◽  
K. R. McClay

AbstractThe Vangorda Pb-Zn-Ag orebody is a 7.1 M tonne, polydeformed stratiform massive sulphide deposit in the Anvil mining district, Yukon, Canada. Five sulphide lithofacies have been identified within the desposit with a typical mineralogy of pyrite, sphalerite, galena, and barite. Pyrrhotite-sphaleritemagnetite assembalges are locally developed. Etched polished sections of massive pyrite ores display relict primary depositional pyrite textures such as colloform growth zoning and spheroidal/framboidal features. A wide variety of brittle deformation, ductile deformation, and annealing textures have been identified. Brittle deformation textures include thin zones of intense cataclasis, grain indentation and axial cracking, and grain boundary sliding features. Ductile deformation textures include strong preferred grain shape orientations, dislocation textures, grain boundary migration, dynamic recrystallisation and pressure solution textures. Post deformational annealing has produced grain growth with lobate grain boundaries, 120° triple junctions and idioblastic pyrite porphyroblasts. The distribution of deformation textures within the Vangorda orebody suggests strong strain partitioning along fold limbs and fault/shear zones, it is postulated that focussed fluid flow in these zones had significant effects on the deformation of these pyritic ores.


2018 ◽  
Author(s):  
Alberto Ceccato ◽  
Luca Menegon ◽  
Giorgio Pennacchioni ◽  
Luiz Fernando Grafulha Morales

Abstract. At mid-crustal conditions, deformation of feldspar is mainly accomplished by a combination of fracturing, dissolution/precipitation and reaction-weakening mechanisms. In particular, K-feldspar is reaction-weakened by formation of strain-induced myrmekite – a fine-grained symplectite of plagioclase and quartz. Here we investigate with EBSD the microstructure of a granodiorite mylonite, developed at 420–460 °C during cooling of the Rieserferner pluton (Eastern Alps), to assess the microstructural processes and the role of weakening associated with myrmekite development. Our analysis shows that the crystallographic orientation of the plagioclase of pristine myrmekite was controlled by that of the replaced K-feldspar. Myrmekite nucleation resulted in both grain size reduction and ordered phase mixing by heterogeneous nucleation of quartz and plagioclase. The fine grain size of sheared myrmekite promoted grain size-sensitive creep mechanisms including fluid-assisted grain boundary sliding in plagioclase, coupled with heterogeneous nucleation of quartz within creep cavitation pores. Flow laws calculated for monomineralic quartz, feldspar, and quartz + plagioclase aggregates (sheared myrmekite), show that during mylonitization at 450 °C, grain-size-sensitive creep in sheared myrmekite accommodated strain rates several orders of magnitude higher than monomineralic quartz layers deforming by dislocation creep. Therefore, diffusion creep and grain size-sensitive processes contributed significantly to bulk rock weakening during mylonitization. Our results have implications for modelling the rheology of the mid-upper continental (felsic) crust.


2020 ◽  
Author(s):  
John Wheeler ◽  
Lynn Evans ◽  
Robyn Gardner ◽  
Sandra Piazolo

&lt;p&gt;Diffusion creep and the wet low temperature version, pressure solution, are major deformation mechanisms in the Earth. Pressure solution operates in many metamorphosing systems in the crust and may contribute to slow creep on fault surfaces. Diffusion creep prevails in areas of the upper mantle deforming slowly, and possibly in most of the lower mantle. Both mechanisms contribute to localisation since small grain sizes can deform faster.&lt;/p&gt;&lt;p&gt;However, there has been limited attention paid to the evolution of microstructure during diffusion creep. In some experiments grains coarsen; in some but not all experiments grains remain rather equant. We have developed a grain-scale numerical model for diffusion creep, which indicates that those processes are very important in influencing evolving strength. Our models illustrate three behaviours.&lt;/p&gt;&lt;ol&gt;&lt;li&gt;Strain localises along slip surfaces formed by aligned grain boundaries on all scales. This affects overall strength.&lt;/li&gt; &lt;li&gt;Diffusion creep is predicted to produce elongate grains and then the overall aggregate has intense mechanical anisotropy. Thus strength during diffusion creep, and localisation on weak zones, is influenced not just by grain size but by other aspects of microstructure.&lt;/li&gt; &lt;li&gt;Grain coarsening increases grain size and strength. Our most recent work shows how it interacts with ongoing deformation. In particular grain growth can lead to particular grain shapes which are directly related to strain rate, and influence strength. Consequently, understanding localisation during diffusion creep must encompass the effects of diffusion itself, grain boundary sliding and grain coarsening.&lt;/li&gt; &lt;/ol&gt;


Sign in / Sign up

Export Citation Format

Share Document