grain boundary pinning
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 13)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Pradeep Kothiyal ◽  
Amit Joshi ◽  
K KS Mer ◽  
Raviraj Verma

Abstract The compressive properties and 3 body wear characteristics of powder metallurgical (PM) processed [Al/Si3N4/Al2O3] P Nanocomposites with single and combined reinforcement of Al2O3 and Si3N4 reinforcing particles having different compositions (1%, 2% and 3%) were studied and evolution of microstructure, grain boundary character and micro texture of fabricated [Al/Si3N4/Al2O3] P Nanocomposites was investigated through EBSD in the present research work. The fraction of high angle boundaries (HAGBs) were observed more in combined reinforcing samples of Al2O3 and Si3N4 whereas a single reinforcing sample of Al2O3 and Si3N4 showed fewer HAGBs. Micro texture results showed the strong textures components near to {112}<111> Cu and {110}<111 for pure sintered Al sample P and mixed reinforcement composites (M1, M2 and M3) > P whereas for single reinforcing sample showed weak textures near to transverse direction. Out of all fabricated composites, 2 % mixed Al2O3 and Si3N4 reinforced composite revealed the maximum ultimate compressive strength (209.98 MPa) and least wear rate (0.1 mm3/min mm3/N-cm for 1 kg load and 3.5 mm3/N-cm for 2kg load) attributing formation of nanocluster causing grain boundary pinning effect. The dominant failure mechanism for all samples was also detected and found to be a mixed-mode ductile failure mechanism for 2 % mixed Al2O3 and Si3N4 reinforcement composite while other sample failed through ductile as well as mixed-mode mechanisms.


Author(s):  
Sai Srikanth Arvapalli ◽  
Muralidhar Miryala ◽  
Milos Jirsa ◽  
Naomichi Sakai ◽  
Masato Murakami

AbstractWe successfully refined a cheap commercial boron powder by means of high-energy ultra-sonication and utilized it in synthesis of bulk MgB2. Rietveld phase analysis of X-ray diffraction pattern revealed completely formed MgB2 with a low amount of MgO. MgB2 bulk prepared of boron ultra-sonicated in ethanol for 15 min showed self-field Jc of around 300 kA/cm2 at 20 K without any compromise in Tc (~39 K). Pinning analysis based on Dew-Hughes expression showed major pinning contribution from grain-boundary pinning (~95.5%), along with a slight contribution from point pinning (4.5%). The microstructure study detected a system of large MgB2 grains (hundreds nm large) and 10–20 nm sized particles, possibly Mg-B-O, formed at MgB2 grain boundaries.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
V. Sandu ◽  
A. M. Ionescu ◽  
G. Aldica ◽  
M. A. Grigoroscuta ◽  
M. Burdusel ◽  
...  

AbstractAn analysis of the field dependence of the pinning force in different, high density sintered samples of MgB2 is presented. The samples were chosen to be representative for pure MgB2, MgB2 with additives, and partially oriented massive samples. In some cases, the curves of pinning force versus magnetic field of the selected samples present peculiar profiles and application of the typical scaling procedures fails. Based on the percolation model, we show that most features of the field dependence of the critical force that generate dissipation comply with the Dew-Hughes scaling law predictions within the grain boundary pinning mechanism if a connecting factor related to the superconducting connection of the grains is used. The field dependence of the connecting function, which is dependent on the superconducting anisotropy, is the main factor that controls the boundary between dissipative and non-dissipative current transport in high magnetic field. Experimental data indicate that the connecting function is also dependent on the particular properties (e.g., the presence of slightly non-stoichiometric phases, defects, homogeneity, and others) of each sample and it has the form of a single or double peaked function in all investigated samples.


Author(s):  
Yuxin Cao ◽  
Xiangliang Wan ◽  
Feng Zhou ◽  
Yu Shen ◽  
Yu Liu ◽  
...  

Abstract The present study elucidates the influence of Mo content on the microstructure – toughness relationship in the coarsegrained heat-affected zone of high-strength low-alloy steels. The low-Mo and high-Mo steels were subjected to 100 kJ cm–1 heat input welding thermal cycling. The results indicated that (Ti,Mo)-carbonitrides were formed in high-Mo steel, whereas (Ti,Nb)-carbonitrides were formed in low-Mo steel. The finer and dispersed precipitates in high-Mo steel refined the prior austenite grain in the coarse-grained heat-affected zone based on the grain boundary pinning effect. However, the smaller prior austenite grain and excessive Mo content induced the formation of an entirely bainitic microstructure in high-Mo steel. Furthermore, a higher fraction of martensite –austenite constituents was observed in high-Mo steel. These results could be responsible for the deterioration of the toughness in the coarse-grained heat-affected zone of high-Mo steel.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sumi Jo ◽  
Lawrence Whitmore ◽  
Sangkyu Woo ◽  
Ainhoa Urrutia Aramburu ◽  
Dietmar Letzig ◽  
...  

AbstractAge-hardenability and corresponding improvement of the mechanical properties of Mg–1Al–0.7Ca and Mg–1Al–0.7Ca–0.7Y alloy sheets are addressed with respect to the microstructure and texture evolution during thermomechanical treatments. A fine grain structure and weak texture with the basal pole split into the sheet transverse direction are retained in the Mg–1Al–0.7Ca–0.7Y sheet even after the homogenization at 500 °C, due to the grain boundary pinning by Y-containing precipitates possessing a high thermal stability. Contrarily, the Mg–1Al–0.7Ca sheet shows a coarse microstructure and basal-type texture after the homogenization. The peak-aged condition is attained after the aging at 250 °C for 1800 s of both homogenized sheets, while the Y-containing sheet shows a higher hardness than the Mg–1Al–0.7Ca sheet. TEM analysis and thermodynamic calculation show the formation of metastable precipitates composed of Al, Ca, Y and Mg in the Mg–1Al–0.7Ca–0.7Y sheet at the homogenized and peak-aged conditions. A significant increase in the yield strength is obtained in the peak-aged condition from 162 MPa after the homogenization to 244 MPa, which arises from the increased size and number density of the precipitates. The high age-hardenability of the Mg–1Al–0.7Ca–0.7Y sheet attributes to the superior mechanical properties with an improved ductility promoted by the weak texture.


2020 ◽  
Vol 51 (12) ◽  
pp. 6439-6460
Author(s):  
MarÍa J. Balart ◽  
Xinjiang Hao ◽  
Samuel Marks ◽  
Geoff D. West ◽  
Marc Walker ◽  
...  

AbstractPowders produced by air-melted gas atomization (AMGA) and vacuum induction gas atomization (VIGA) from Ti-V microalloyed 316L and Al-V microalloyed 17-4PH stainless steels along with their feedstock material and Hot Isostatically Pressed (HIP’d) products have been examined. Inclusion characteristics and development through process along with changes in grain size have been characterized. The main findings are that a thin oxide film forms on the powder surface, thicker for the 316L powder than the 17-4PH powder as indicated by XPS analysis of selected powder precursors, and large inclusions (predominantly oxides) are also observed on the 316L powder. This results in a high number of inclusions, including more complex two-phase inclusions, on the prior particle boundaries in the HIP’d material. Grain growth occurs during HIPping of the 316L powders with some evidence of inclusions locally pinning boundaries. In the vacuum-melted powder, smaller Ti-rich inclusions are present which give more grain boundary pinning than in the air-melted powder where Ti was lost from the material during melting. Consideration has also been made to determine the variation of Ti and V microalloying elements and residual Cu through processing. It was found that Ti was lost during air melting but partly retained after vacuum melting leading to the presence of fine and complex Ti-containing precipitates which provided grain boundary pinning during HIPping and heat treatment. V was retained in the melt by the use of both AMGA and VIGA processes, and therefore available for precipitation during HIPping. Residual Cu was retained during both air and vacuum melting and was associated with Mn S and Mn O S inclusions overwhelmingly outweighing that of Mn O inclusions in the two HIP’d 316L samples.


2020 ◽  
Vol 27 (09) ◽  
pp. 1950200
Author(s):  
G. VEDABOURISWARAN ◽  
S. ARAVINDAN ◽  
P. SATHYA

Surface composites are developed on Mg RZ 5 alloy by friction stir processing. During FSP, hard reinforcements are introduced into the matrix of RZ 5 alloy and dispersed uniformly by mechanical stirring action. The reinforcements dispersed were boron carbide, carbon nanotubes (multi-walled) and an 80:20 mixture of zirconia and alumina particles. Dynamic recrystallization and grain boundary pinning action by reinforcement particles resulted in the generation of fine-grained surface composites. Corrosion characteristics of the base material and the surface composites are studied by potentiodynamic polarization technique. The corrosion rates estimated for the surface composites are found to be far lesser than the base material while their polarization resistances were higher than the base material. Among all surface composites, B4C particle reinforced surface composites exhibited the lowest corrosion rate of [Formula: see text]15 mpy. Reduction in the corrosion rate of the surface composites is influenced by fine-grained microstructure and presence of harder reinforcement particles.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2173
Author(s):  
Michael R. Koblischka ◽  
Anjela Koblischka-Veneva ◽  
Jörg Schmauch ◽  
Masato Murakami

The flux pinning properties of reacted-and-pressed Ba0.6K0.4Fe2As2 powder were measured using magnetic hysteresis loops in the temperature range 20 K ≤ T ≤ 35 K. The scaling analysis of the flux pinning forces ( F p = j c × B , with j c denoting the critical current density) following the Dew-Hughes model reveals a dominant flux pinning provided by normal-conducting point defects ( δ l -pinning) with only small irreversibility fields, H irr , ranging between 0.5 T (35 K) and 16 T (20 K). Kramer plots demonstrate a linear behavior above an applied field of 0.6 T. The samples were further characterized by electron backscatter diffraction (EBSD) analysis to elucidate the origin of the flux pinning. We compare our data with results of Weiss et al. (bulks) and Yao et al. (tapes), revealing that the dominant flux pinning in the samples for applications is provided mainly by grain boundary pinning, created by the densification procedures and the mechanical deformation applied.


Sign in / Sign up

Export Citation Format

Share Document