diffusion creep
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 55)

H-INDEX

38
(FIVE YEARS 2)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 90
Author(s):  
Cinzia Menapace ◽  
Bhupendra Sharma ◽  
Kei Ameyama

The hot deformation behavior of a harmonic-structured pure nickel has been studied and compared with the hot deformability of a homogeneously structured nickel. Both materials were produced via the powder metallurgy route through the Spark Plasma Sintering (SPS) of mechanical milled and un-milled powders. Hot deformation was evaluated through compression tests at three different temperatures (400 °C, 800 °C, and 1300 °C), covering a wide range in the homologous temperature spectrum for Ni (from 0.39 to 0.91), and at three different strain rates (0.001, 0.01, and 0.1 s−1). The evaluation of the stress–strain curves showed a higher hot compression resistance for the harmonic-structured nickel, together with higher strain hardening and strain rate sensitivity, thanks to the peculiar microstructural features of this material. Through the metallographic analysis of the specimens after hot compression, different mechanisms were identified as responsible for the deformation behavior in relation to the temperature of testing. While at 400 °C dynamic recrystallization has slightly started, at 800 °C it is widely diffused, and at 1300 °C it is replaced by grain growth and diffusion creep phenomena.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6818
Author(s):  
Hao-Zhe Chen ◽  
Zhu-Shan Shao ◽  
Dong-Dong Jin ◽  
Zhe Zhang ◽  
Dong-Bo Zhou

To investigate the brittle creep failure process of rock material, the time-dependent properties of brittle rocks under the impact of homogeneity are analyzed by the numerical simulation method, RFPA-Creep (2D). Deformation is more palpable for more homogeneous rock material under the uniaxial creep loading condition. At a low stress level, diffusion creep may occur and transition to dislocation creep with increasing applied stress. The law for increasing creep strain with the homogeneity index under a constant confined condition is similar to the uniaxial case, and dislocation creep tends to happen with increasing confining pressure for the same homogeneity index. The dilatancy index reaches its maximum at a high stress level when rock approaches failure, and the evolution of the dilatancy index with the homogeneity index under the same confining pressure is similar to the uniaxial case and is more marked than that under the unconfined condition. Both uniaxial and triaxial creep failure originate from the ductile damage accumulation inside rock. The dominant shear-type failure is exhibited by uniaxial creep and the conventional compression case presents the splitting-based failure mode. Under confining pressure, the creep failure pattern is prone to shear, which is more notable for the rock with higher homogeneity.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 995
Author(s):  
Yuval Boneh ◽  
Emily J. Chin ◽  
Greg Hirth

Combined observations from natural and experimental deformation microstructures are often used to constrain the rheological properties of the upper mantle. However, relating natural and experimental deformation processes typically requires orders of magnitude extrapolation in strain rate due to vastly different time scales between nature and the lab. We examined a sheared peridotite xenolith that was deformed under strain rates comparable to laboratory shearing time scales. Microstructure analysis using an optical microscope and electron backscatter diffraction (EBSD) was done to characterize the bulk crystallographic preferred orientation (CPO), intragrain misorientations, subgrain boundaries, and spatial distribution of grains. We found that the microstructure varied between monophase (olivine) and multiphase (i.e., olivine, pyroxene, and garnet) bands. Olivine grains in the monophase bands had stronger CPO, larger grain size, and higher internal misorientations compared with olivine grains in the multiphase bands. The bulk olivine CPO suggests a dominant (010)[100] and secondary activated (001)[100] that are consistent with the experimentally observed transition of the A to E-types. The bulk CPO and intragrain misorientations of olivine and orthopyroxene suggest that a coarser-grained initial fabric was deformed by dislocation creep coeval with the reduction of grain size due to dynamic recrystallization. Comparing the deformation mechanisms inferred from the microstructure with experimental flow laws indicates that the reduction of grain size in orthopyroxene promotes activation of diffusion creep and suggests a high activation volume for wet orthopyroxene dislocation creep.


2021 ◽  
Author(s):  
Amicia Lee ◽  
Holger Stünitz ◽  
Mathieu Soret ◽  
Matheus Battisti

Unaltered mafic rocks consist of mechanically strong minerals (e.g. pyroxene, plagioclase and garnet) that can be deformed by crystal plastic mechanisms only at high temperatures (>800°C). Yet, many mafic rocks do show extensive deformation by non-brittle mechanisms when they have been subjected to lower temperature conditions. In such cases, the deformation typically is assisted by mineral reactions. Here we show that dissolution-precipitation creep (as a type of diffusion creep) plays a major role in deformation of gabbro lenses at upper amphibolite facies conditions. The Kågen gabbro exposed on south Arnøya is comprised of almost undeformed gabbro lenses with sheared margins wrapping around them. The shearing has taken place at temperatures of 690 ± 25 °C and pressures of 1.0 to 1.1 GPa. This contribution analyses the evolution of the microstructures and fabric of the low strain gabbro to high strain margins. Microstructural and crystallographic preferred orientation (CPO) data indicate that dissolution-precipitation creep is the dominant deformation mechanism, where dissolution of the gabbro took place in reacting phases of clinopyroxene and plagioclase, and precipitation took place in the form of new minerals: new plagioclase and clinopyroxene (with different composition), amphibole, and garnet. Amphibole shows a strong CPO that is primarily controlled by its preferential growth in the stretching direction. Synchronous deformation and mineral reactions of clinopyroxene suggest that mafic rocks can become mechanically weak during a general transformation weakening process, i.e. the interaction of mineral reaction and deformation by diffusion creep. The weakening is directly connected to a fluid-assisted transformation process that facilitates diffusion creep deformation of strong minerals at far lower stresses and temperatures than dislocation creep. Initially strong lithologies can become weak, provided that reactions can proceed during deformation; the transformation process itself is an important weakening mechanism in mafic (and other) rocks, facilitating deformation at low differential stresses and low stress exponents.


2021 ◽  
Author(s):  
Jonas Ruh ◽  
Leif Tokle ◽  
Whitney Behr

Abstract Geodynamic numerical models often employ solely grain-size-independent dislocation creep to describe upper mantle dynamics. However, observations from nature and rock deformation experiments suggest that shear zones can transition to a grain-size-dependent creep mechanism due to dynamic grain size evolution, with important implications for the overall strength of plate boundaries. We apply a two-dimensional thermo-mechanical numerical model with a composite diffusion-dislocation creep rheology coupled to a dynamic grain size evolution model based on the paleowattmeter. Results indicate average olivine grain sizes of 3–12 cm for the upper mantle below the LAB, while in the lithosphere grain size ranges from 0.3–3 mm at the Moho to 6–15 cm at the LAB. Such a grain size distribution results in dislocation creep being the dominant deformation mechanism in the upper mantle. However, deformation-related grain size reduction below 100 μm activates diffusion creep along lithospheric-scale shear zones during rifting, affecting the overall strength of tectonic plate boundaries.


Ceramics ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 331-363
Author(s):  
Eugeniy Lantcev ◽  
Aleksey Nokhrin ◽  
Nataliya Malekhonova ◽  
Maksim Boldin ◽  
Vladimir Chuvil'deev ◽  
...  

This study investigates the impact of carbon on the kinetics of the spark plasma sintering (SPS) of nano- and submicron powders WC-10wt.%Co. Carbon, in the form of graphite, was introduced into powders by mixing. The activation energy of solid-phase sintering was determined for the conditions of isothermal and continuous heating. It has been demonstrated that increasing the carbon content leads to a decrease in the fraction of η-phase particles and a shift of the shrinkage curve towards lower heating temperatures. It has been established that increasing the graphite content in nano- and submicron powders has no significant effect on the SPS activation energy for “mid-range” heating temperatures, QS(I). The value of QS(I) is close to the activation energy of grain-boundary diffusion in cobalt. It has been demonstrated that increasing the content of graphite leads to a significant decrease in the SPS activation energy, QS(II), for “higher-range” heating temperatures due to lower concentration of tungsten atoms in cobalt-based γ-phase. It has been established that the sintering kinetics of fine-grained WC-Co hard alloys is limited by the intensity of diffusion creep of cobalt (Coble creep).


Sign in / Sign up

Export Citation Format

Share Document