scholarly journals Biomimetic optics: liquid-based optical elements imitating the eye functionality

Author(s):  
Natalia Ivanova

The optical systems mimicking the eye functions are of great importance in various applications including consumer electronics, medical equipment, machine vision systems and robotics. This optics offers advantages over traditional optical technologies such as the superior adaptation to changing conditions and the comprehensive range of functional characteristics at miniature sizes. This paper presents a review on the recent progress in the development of human eye-inspired optical systems. Liquid-based and elastomer-based tunable optical elements are discussed with the focus on the actuation mechanism, optical performance and the possibility of integration into artificial eye systems. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 3)’.

Author(s):  
Y. Meurice ◽  
R. Perry ◽  
S.-W. Tsai

The renormalization group (RG) method developed by Ken Wilson more than four decades ago has revolutionized the way we think about problems involving a broad range of energy scales such as phase transitions, turbulence, continuum limits and bifurcations in dynamical systems. The Theme Issue provides articles reviewing recent progress made using the RG method in atomic, condensed matter, nuclear and particle physics. In the following, we introduce these articles in a way that emphasizes common themes and the universal aspects of the method.


2019 ◽  
Vol 215 ◽  
pp. 13003
Author(s):  
Sara Nagelberg ◽  
Amy Goodling ◽  
Kaushikaram Subramanian ◽  
George Barbastathis ◽  
Moritz Kreysing ◽  
...  

Micro-scale optical components play a critical role in many applications, in particular when these components are capable of dynamically responding to different stimuli with a controlled variation of their optical behavior. Here, we discuss the potential of micro-scale bi-phase emulsion droplets as a material platform for dynamic fluid optical components. Such droplets act as liquid compound micro-lenses with dynamically tunable focal lengths. They can be reconfigured to focus or scatter light and form images. In addition, we discuss how these droplets can be used to create iridescent structural color with large angular spectral separation. Experimental demonstrations of the emulsion droplet optics are complemented by theoretical analysis and wave-optical modelling. Finally, we provide evidence of the droplets utility as fluidic optical elements in potential application scenarios.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5721
Author(s):  
Sarah El Himer ◽  
Salima El Ayane ◽  
Sara El Yahyaoui ◽  
Jean Paul Salvestrini ◽  
Ali Ahaitouf

Concentrator Photovoltaic (CPV) technology, by using efficient optical elements, small sizes and high efficiency multi-junction solar cells, can be seen as a bright energy source to produce more cost-effective electricity. The main and basic idea is to replace the use of expensive solar cells with less expensive optical elements made from different materials. This paper aims to give to the readers a rapid and concise overview of CPV and the main characteristics to be considered when designing a CPV system. It reviews the main optical configurations presented in the literature, their advantages and drawbacks, as well as the recent progress in the concentration ratio and the major performances achieved in the field. The paper considers the more recent works, their optical designs, as well as their optical and electrical performances. It also relates the major achievements on the industrial side with the major milestones in CPV developments.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2856 ◽  
Author(s):  
Jorge Alamán ◽  
María López-Valdeolivas ◽  
Raquel Alicante ◽  
Carlos Sánchez-Somolinos

Optical planar waveguide sensors, able to detect and process information from the environment in a fast, cost-effective, and remote fashion, are of great interest currently in different application areas including security, metrology, automotive, aerospace, consumer electronics, energy, environment, or health. Integration of networks of these systems together with other optical elements, such as light sources, readout, or detection systems, in a planar waveguide geometry is greatly demanded towards more compact, portable, and versatile sensing platforms. Herein, we report an optical temperature sensor with a planar waveguide architecture integrating inkjet-printed luminescent light coupling-in and readout elements with matched emission and excitation. The first luminescent element, when illuminated with light in its absorption band, emits light that is partially coupled into the propagation modes of the planar waveguide. Remote excitation of this element can be performed without the need for special alignment of the light source. A thermoresponsive liquid crystal-based film regulates the amount of light coupled out from the planar waveguide at the sensing location. The second luminescent element partly absorbs the waveguided light that reaches its location and emits at longer wavelengths, serving as a temperature readout element through luminescence intensity measurements. Overall, the ability of inkjet technology to digitally print luminescent elements demonstrates great potential for the integration and miniaturization of light coupling-in and readout elements in optical planar waveguide sensing platforms.


Author(s):  
Paul D. Williams ◽  
Michael J. P. Cullen ◽  
Michael K. Davey ◽  
John M. Huthnance

The societal need for reliable climate predictions and a proper assessment of their uncertainties is pressing. Uncertainties arise not only from initial conditions and forcing scenarios, but also from model formulation. Here, we identify and document three broad classes of problems, each representing what we regard to be an outstanding challenge in the area of mathematics applied to the climate system. First, there is the problem of the development and evaluation of simple physically based models of the global climate. Second, there is the problem of the development and evaluation of the components of complex models such as general circulation models. Third, there is the problem of the development and evaluation of appropriate statistical frameworks. We discuss these problems in turn, emphasizing the recent progress made by the papers presented in this Theme Issue. Many pressing challenges in climate science require closer collaboration between climate scientists, mathematicians and statisticians. We hope the papers contained in this Theme Issue will act as inspiration for such collaborations and for setting future research directions.


Author(s):  
Gareth Knowles ◽  
Bruce Bower

Abstract Vibratory load transmission reduction for precision space A major challenge to the aerospace industry is to develop precision beam steering optics with clear aperture as large as 8 inches that operate at bandwidths of 1KHz, have throws of 3–10 mrad, and position accuracy of 100 nrad. The proposed technology promises to meet these requirements by introducing a new piezoelectronically driven colocated sensoriactuation system. The novel sensor promises to enable ultra-linear, 1nm resolution and 4 KHz small signal bandwidth in a small package. The sensor is integrated into the actuation mechanism in order to provide advantageous colocated functioning. The actuation mechanism is of unique high stiffness and shear strength capable of driving at high-bandwidth with no low coupling modes present. The proposed technology offers a lower cost, lighter weight, lower volume solution that can markedly increase performance capability. The approach is applied to the problem of controlling fast optics for precision optical compensation or hyperspectral imaging. The paper presents aspects of design experiment and system measurement.


Sign in / Sign up

Export Citation Format

Share Document