scholarly journals Adaptive neural network control for nonlinear cyber-physical systems subject to false data injection attacks with prescribed performance

Author(s):  
Zhijie Liu ◽  
Jinglei Tang ◽  
Zhijia Zhao ◽  
Shuang Zhang

Cyber-physical systems (CPSs), as emerging products of industry 4.0 , play a key role in the development of intelligent manufacturing. This paper proposes an observer-based adaptive neural network (NN) control for nonlinear strict-feedback CPSs subject to false data injection attacks. Since there may be strict constraints on the state or output signals of nonlinear cyber-physical systems (NCPSs), we propose a time-varying asymmetric barrier Lyapunov function to realize the specific output constraints of NCPSs under cyber-attacks. Besides, since false data injection attacks will corrupt the transmitted state variables, an observer is designed to obtain observations of the exact states, and NN is used to approximate the unknown nonlinearity of NCPSs. With the proposed control strategy, the constraint control problem of NCPSs subject to false data injection attacks is settled. Finally, a numerical simulation example verifies the effectiveness of the proposed controller. This article is part of the theme issue ‘Towards symbiotic autonomous systems’.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Wei Zhao ◽  
Li Tang ◽  
Yan-Jun Liu

This article investigates an adaptive neural network (NN) control algorithm for marine surface vessels with time-varying output constraints and unknown external disturbances. The nonlinear state-dependent transformation (NSDT) is introduced to eliminate the feasibility conditions of virtual controller. Moreover, the barrier Lyapunov function (BLF) is used to achieve time-varying output constraints. As an important approximation tool, the NN is employed to approximate uncertain and continuous functions. Subsequently, the disturbance observer is structured to observe time-varying constraints and unknown external disturbances. The novel strategy can guarantee that all signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB). Finally, the simulation results verify the benefit of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document