Plastoquinones in photosynthesis

Several plastoquinones with different or modified side chains have been characterized in plant material: they are localized in the inner thylakoid membrane of the chloroplast. So far only plastoquinone-45 (PQ-45) has been identified as an obligatory functional component of the photosynthetic electron transport chain in chloroplasts between photosystem II and photosystem I. A special form (semiquinone) of PQ-45 acts as primary acceptor Q of photosystem II, a large pool of PQ-45 as electron buffer, interconnecting several electron transport chains. The rôle of PQ, in energy conservation (ATP formation) is of particular current interest. Owing to vectorial electron flow across the thylakoid membrane, plastoquinone is thought to be reduced on the outside and plastohydroquinone to be oxidized on the inside of the membrane. This results in a proton translocation across the membrane and a build-up of a proton motive force which drives ATP formation. Old and new plastoquinone antagonists are described and the relevance of inhibitor studies on the rôle of plastoquinone in electron flow and photophosphorylation is discussed. Open questions and current problems of the mechanism of plastoquinone/plastoquinol transport across the membrane - and of proton translocation connected to it - relevant for the mechanism of energy conservation in photosynthesis, are pointed out.

1976 ◽  
Vol 31 (3-4) ◽  
pp. 152-156 ◽  
Author(s):  
Achim Trebst

Abstract In photosynthesis of chloroplasts and bacterial chromatophores an induced artificial electron flow bypass may restore the inhibition of electron flow and of coupled ATP formation by two possible mechanisms. An artificial transmembrane electron flow bypass will lead to artificial energy conservation, when the redox reaction cycle of the added mediator across the membrane acts as proton pump. In an artificial internal electron flow bypass an inhibited native energy conservation may be reactivated; here an electron flow bypass induced by the mediator in the inside space restores the native proton translocation. The inhibition and the restoration of electron flow by antimycin, dibromothymoquinone and valinomycin is compared.


1984 ◽  
Vol 39 (5) ◽  
pp. 374-377 ◽  
Author(s):  
J. J. S. van Rensen

The reactivation of the Hill reaction in CO2-depleted broken chloroplasts by various concentrations of bicarbonate was measured in the absence and in the presence of photosystem II herbicides. It appears that these herbicides decrease the apparent affinity of the thylakoid membrane for bicarbonate. Different characteristics of bicarbonate binding were observed in chloroplasts of triazine-resistant Amaranthus hybridus compared to the triazine-sensitive biotype. It is concluded that photosystem II herbicides, bicarbonate and formate interact with each other in their binding to the Qв-protein and their interference with photosynthetic electron transport.


1980 ◽  
Vol 35 (3-4) ◽  
pp. 293-297 ◽  
Author(s):  
P. V. Sane ◽  
Udo Johanningmeier

Abstract Low concentrations (10 µM) of tetranitromethane inhibit noncyclic electron transport in spinach chloroplasts. A study of different partial electron transport reactions shows that tetranitromethane primarily interferes with the electron flow from water to PS II. At higher concentrations the oxidation of plastohydroquinone is also inhibited. Because diphenyl carbazide but not Mn2+ ions can donate electrons efficiently to PS II in the presence of tetranitromethane it is suggested that it blocks the donor side of PS II prior to donation of electrons by diphenyl carbazide. The pH dependence of the inhibition by this protein modifying reagent may indicate that a functional-SH group is essential for a protein, which mediates electron transport between the water splitting complex and the reaction center of PS II.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Manuela Kramer ◽  
Melvin Rodriguez-Heredia ◽  
Francesco Saccon ◽  
Laura Mosebach ◽  
Manuel Twachtmann ◽  
...  

During photosynthesis, electron transport is necessary for carbon assimilation and must be regulated to minimize free radical damage. There is a longstanding controversy over the role of a critical enzyme in this process (ferredoxin:NADP(H) oxidoreductase, or FNR), and in particular its location within chloroplasts. Here we use immunogold labelling to prove that FNR previously assigned as soluble is in fact membrane associated. We combined this technique with a genetic approach in the model plant Arabidopsis to show that the distribution of this enzyme between different membrane regions depends on its interaction with specific tether proteins. We further demonstrate a correlation between the interaction of FNR with different proteins and the activity of alternative photosynthetic electron transport pathways. This supports a role for FNR location in regulating photosynthetic electron flow during the transition from dark to light.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1216
Author(s):  
Marine Messant ◽  
Anja Krieger-Liszkay ◽  
Ginga Shimakawa

Photosynthesis has to work efficiently in contrasting environments such as in shade and full sun. Rapid changes in light intensity and over-reduction of the photosynthetic electron transport chain cause production of reactive oxygen species, which can potentially damage the photosynthetic apparatus. Thus, to avoid such damage, photosynthetic electron transport is regulated on many levels, including light absorption in antenna, electron transfer reactions in the reaction centers, and consumption of ATP and NADPH in different metabolic pathways. Many regulatory mechanisms involve the movement of protein-pigment complexes within the thylakoid membrane. Furthermore, a certain number of chloroplast proteins exist in different oligomerization states, which temporally associate to the thylakoid membrane and modulate their activity. This review starts by giving a short overview of the lipid composition of the chloroplast membranes, followed by describing supercomplex formation in cyclic electron flow. Protein movements involved in the various mechanisms of non-photochemical quenching, including thermal dissipation, state transitions and the photosystem II damage–repair cycle are detailed. We highlight the importance of changes in the oligomerization state of VIPP and of the plastid terminal oxidase PTOX and discuss the factors that may be responsible for these changes. Photosynthesis-related protein movements and organization states of certain proteins all play a role in acclimation of the photosynthetic organism to the environment.


2007 ◽  
Vol 34 (3) ◽  
pp. 214 ◽  
Author(s):  
Dmytro Kornyeyev ◽  
Luke Hendrickson

Chlorophyll a fluorescence measured in vivo is frequently used to study the role of different processes influencing the distribution of excitation energy in PSII complexes. Such studies are important for understanding the regulation of photosynthetic electron transport. However, at the present time, there is no unified methodology to analyse the energy partitioning in PSII. In this article, we critically assess several approaches recently developed in this area of research and propose new simple equations, which can be used for de-convolution of non-photochemical energy quenching in PSII complexes.


Weed Science ◽  
1978 ◽  
Vol 26 (1) ◽  
pp. 84-89 ◽  
Author(s):  
G. J. Bethlenfalvay ◽  
P. A. Castelfranco

The effect of diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea], desmedipham [ethyl m-hydroxycarbanilate carbanilate(ester)], propanil (3′,4′-dichloropropionanilide), and dibromothymoquinone (DBMIB) (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone) on proton translocation and photophosphorylation in isolated spinach (Spinacia oleracea L.) chloroplast fragments was investigated. In the absence of added cofactors, O2, or artificial electron acceptors, cyclic electron transport occurred, which was coupled to energy conservation. Under aerobic conditions O2 acted as the terminal acceptor in non-cyclic electron transport. Proton translocation and photophosphorylation in the cyclic process were enhanced by diuron, desmedipham, and propanil, while in the non-cyclic process they were inhibited by all three herbicides. DBMIB inhibited proton translocation and photophosphorylation in both processes. Proton translocation and its enhancement increased with increasing light intensities. The finding that the plastoquinone (PQ) antagonist DBMIB disrupted cyclic as well as noncyclic electron flow, while diuron enhanced the cyclic and inhibited the noncyclic process, indicated that the acceptor site for endogenously-cycling electrons must lie between the active site of diuron inhibition and PQ, The close similarity in the behavior of diuron, desmedipham, and propanil suggests that their site of action is the same.


1985 ◽  
Vol 40 (5-6) ◽  
pp. 391-399 ◽  
Author(s):  
A. Trebst ◽  
B. Depka ◽  
S. M. Ridley ◽  
A. F. Hawkins

Abstract Herbicidal halogen substituted 4-hydroxypyridines are inhibitors of photosynthetic electron flow in isolated thylakoid membranes by interfering with the acceptor side of photosystem II. Tetrabromo-4-hydroxypyridine, the most active compound found, has a pI50-value of 7.6 in the inhibition of oxygen evolution in both the reduction of an acceptor of photosystem I and an acceptor of photosystem II. The new inhibitors displace both metribuzin and ioxynil from the membrane. The 4-hydroxypyridines, like ioxynil, have unimpaired inhibitor potency in Tristreated chloroplasts, whereas the DCMU-type family of herbicides does not. It is suggested that 4-hydroxypyridines are complementary to phenol-type inhibitors, and a common essential element is proposed. The 4-hydroxypyridines do not inhibit photosystem I or non-cyclic electron flow through the cytochrome b/f complex. But they do have a second inhibition site in photosynthetic electron transport since they inhibit ferredoxin-catalyzed cyclic electron flow, indicating an antimycin-like property. A comparison of the in vitro potency of the compounds with the in vivo potency shows no correlation. A major herbicidal mode of action of the group is related to the inhibition of carotenoid synthesis, and access to the chloroplast lamellae in vivo for inhibition of electron transport may be restricted.


Sign in / Sign up

Export Citation Format

Share Document