scholarly journals Regulation of photosynthetic electron flow on dark to light transition by ferredoxin:NADP(H) oxidoreductase interactions

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Manuela Kramer ◽  
Melvin Rodriguez-Heredia ◽  
Francesco Saccon ◽  
Laura Mosebach ◽  
Manuel Twachtmann ◽  
...  

During photosynthesis, electron transport is necessary for carbon assimilation and must be regulated to minimize free radical damage. There is a longstanding controversy over the role of a critical enzyme in this process (ferredoxin:NADP(H) oxidoreductase, or FNR), and in particular its location within chloroplasts. Here we use immunogold labelling to prove that FNR previously assigned as soluble is in fact membrane associated. We combined this technique with a genetic approach in the model plant Arabidopsis to show that the distribution of this enzyme between different membrane regions depends on its interaction with specific tether proteins. We further demonstrate a correlation between the interaction of FNR with different proteins and the activity of alternative photosynthetic electron transport pathways. This supports a role for FNR location in regulating photosynthetic electron flow during the transition from dark to light.

1984 ◽  
Vol 39 (5) ◽  
pp. 374-377 ◽  
Author(s):  
J. J. S. van Rensen

The reactivation of the Hill reaction in CO2-depleted broken chloroplasts by various concentrations of bicarbonate was measured in the absence and in the presence of photosystem II herbicides. It appears that these herbicides decrease the apparent affinity of the thylakoid membrane for bicarbonate. Different characteristics of bicarbonate binding were observed in chloroplasts of triazine-resistant Amaranthus hybridus compared to the triazine-sensitive biotype. It is concluded that photosystem II herbicides, bicarbonate and formate interact with each other in their binding to the Qв-protein and their interference with photosynthetic electron transport.


1981 ◽  
Vol 36 (9-10) ◽  
pp. 848-852 ◽  
Author(s):  
W. Draber ◽  
H. J. Knops ◽  
A. Trebst

Abstract Several substituted diphenylethers were found to be effective inhibitors of photosynthetic electron flow in isolated thylakoid membranes from spinach chloroplasts. T heir site of inhibition was localized with artificial acceptor and donor systems. The phenylether of an alkyl substituted nitrophenol is prim arely inhibiting electron flow after plastoquinone function whereas a dinitro-phenylether of a phenyl substituted nitrophenol is inhibiting before plastoquinone function. Therefore certain diphenylethers interfere with plastoquinone function at the oxidation or reduction site, depending on the substitution.


1974 ◽  
Vol 29 (9-10) ◽  
pp. 545-551 ◽  
Author(s):  
Walter Oettmeier ◽  
Rolf Grewe

Abstract Various mono-and diazaphenanthrenes were prepared and assayed for their activity as inhibi­tors of photosynthetic electron flow in isolated chloroplasts in order to get more insight into the mechanism of action of the well known inhibitor o-phenanthroline = 1,10-diazaphenanthrene. The results show that 1-, 4-and 5-azaphenanthrene are only slightly less active than 1,10-diazaphen-anthrene. In the case of the different diazaphenanthrenes, 1,4-, 1,7-and 5,6-diazaphenanthrene exhibited somewhat lower activity than 1,10-diaphenanthrene, whereas 2,9-and 4,7-diazaphen-anthrene were completely inactive. Substitution at C-atoms of 1,10-diazaphenanthrene leads to an increase in activity in the case of the 4-and 7-position, regardless of electropositive or electro­ negative substituents, whereas substitution at the 2-, 3-, 5-, 6-, 8-and 9-position leads to a de­ creased activity. The ability of 1,10-diazaphenanthrene to form iron complexes seems to be of little relevance to the inhibitory activity on photosynthetic electron transport. This follows also from the fact that other strong iron complexing agens, like 2.2'-bipyridine or 8-hydroxyquinoline, are not inhibitory


1981 ◽  
Vol 36 (7-8) ◽  
pp. 645-655 ◽  
Author(s):  
Klaus Pfister ◽  
Hartmut K. Lichtenthaler ◽  
Günther Burger ◽  
Hans Musso ◽  
Manuel Zahn

Abstract Halogenated naphthoquinones act as inhibitors of photosynthetic electron flow. I50 concentra­ tion for inhibition of methylviologen reduction were found to range between 2 × 10-5 m to 2 × 10-6 M. Comparing their effects on several partial reactions of electron flow, the inhibition site of the naphthoquinones was found to be at the reducing site of PS II. Studies of fluorescence transients in presence of halogenated naphthoquinones give further evidence for a site action similar to that of diuron and different to that of DBMIB. All naphthoquinones act as quenchers of chlorophyll fluorescence with pure chlorophyll a, and with much higher efficiency in green algae and chloroplasts. It is concluded, that the halogenated naphthoquinones act similar to PS II-inhibitors like diuron, but do not share a common binding site at the PS II-complex. Implications of a possible involvement of phylloquinone K 1 in photosynthetic electron transport are discussed. The synthesis of 2-chloro-as well as 2-bromo-3-isopropyl-1,4-naphthoquinone is described.


Life ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 13 ◽  
Author(s):  
Ann Magnuson

Heterocysts are specialized cells that differentiate in the filaments of heterocystous cyanobacteria. Their role is to maintain a microoxic environment for the nitrogenase enzyme during diazotrophic growth. The lack of photosynthetic water oxidation in the heterocyst puts special constraints on the energetics for nitrogen fixation, and the electron transport pathways of heterocyst thylakoids are slightly different from those in vegetative cells. During recent years, there has been a growing interest in utilizing heterocysts as cell factories for the production of fuels and other chemical commodities. Optimization of these production systems requires some consideration of the bioenergetics behind nitrogen fixation. In this overview, we emphasize the role of photosynthetic electron transport in providing ATP and reductants to the nitrogenase enzyme, and provide some examples where heterocysts have been used as production facilities.


Several plastoquinones with different or modified side chains have been characterized in plant material: they are localized in the inner thylakoid membrane of the chloroplast. So far only plastoquinone-45 (PQ-45) has been identified as an obligatory functional component of the photosynthetic electron transport chain in chloroplasts between photosystem II and photosystem I. A special form (semiquinone) of PQ-45 acts as primary acceptor Q of photosystem II, a large pool of PQ-45 as electron buffer, interconnecting several electron transport chains. The rôle of PQ, in energy conservation (ATP formation) is of particular current interest. Owing to vectorial electron flow across the thylakoid membrane, plastoquinone is thought to be reduced on the outside and plastohydroquinone to be oxidized on the inside of the membrane. This results in a proton translocation across the membrane and a build-up of a proton motive force which drives ATP formation. Old and new plastoquinone antagonists are described and the relevance of inhibitor studies on the rôle of plastoquinone in electron flow and photophosphorylation is discussed. Open questions and current problems of the mechanism of plastoquinone/plastoquinol transport across the membrane - and of proton translocation connected to it - relevant for the mechanism of energy conservation in photosynthesis, are pointed out.


2012 ◽  
Vol 1 (10) ◽  
pp. 79 ◽  
Author(s):  
G. Raja* ◽  
Ivvala Anand Shaker ◽  
Inampudi Sailaja ◽  
R. Swaminathan ◽  
S. Saleem Basha ◽  
...  

Natural antioxidants can protect the human body from free radicals and retard the progress of many chronic diseases as well as lipid oxidative rancidity in foods. The role of antioxidants has protected effect against free radical damage that may cause many diseases including cancer. Primary sources of naturally occurring antioxidants are known as whole grains, fruits, and vegetables. Several studies suggest that regular consumption of nuts, mostly walnuts, may have beneficial effects against oxidative stress mediated diseases such as cardiovascular disease and cancer. The role of antioxidants has attracted much interest with respect to their protective effect against free radical damage that may cause many diseases including cancer. Juglans regia L. (walnut) contains antioxidant compounds, which are thought to contribute to their biological properties. Polyphenols, flavonoids and flavonols concentrations and antioxidant activity of Leaves, Stems and Nuts extract of Juglans regia L. as evaluated using DPPH, ABTS, Nitric acid, hydroxyl and superoxide radical scavenging activity, lipid peroxidation and total oxidation activity were determined. The antioxidant activities of Leaves, Stems and Nuts extract of Juglans regia L. were concentration dependent in different experimental models and it was observed that free radicals were scavenged by the test compounds in all the models.


Author(s):  
D Özmen ◽  
I Mutaf ◽  
B Özmen ◽  
J Mentes ◽  
O Bayindir

This study aims to explore the role of reactive oxygen radicals in the genesis of diabetic cataract. Lipid peroxide (LPO) concentrations in senile ( n = 30) and diabetic ( n = 14) cataractous lenses, were determined as thiobarbituric acid-reactive substances (TBARS) by a method modified from Satoh and Yagi, and reduced glutathione (GSH) concentrations were measured according to Beutler. Lens LPO levels (mean, SD; nmol TBARS/g protein) were significantly higher in diabetics (107·54, 18·12) than senile cataractous subjects (53·54, 15·48) ( P < 0·0001). Lens GSH levels (mean, SD; nmol/g protein) showed no significant difference between diabetics (4·29, 2·05) and senile cataractous subjects (4·68, 3·12). These results suggest that free radical damage is more effective in the genesis of diabetic cataract than in senile cataract.


Sign in / Sign up

Export Citation Format

Share Document