The red cell band 3 protein: its role in anion transport

Studies of anion transport across the red blood cell membrane fall generally into two categories: (1) those concerned with the operational characterization of the transport system, largely by kinetic analysis and inhibitor studies; and (2) those concerned with the structure of band 3, a transmembrane peptide identified as the transport protein. The kinetics are consistent with a ping-pong model in which positively charged anion-binding sites can alternate between exposure to the inside and outside compartments but can only shift one position to the other when occupied by an anion. The structural studies on band 3 indicate that only 60 % of the peptide is essential for transport. That particular portion is in the form of a dimer consisting of an assembly of membrane-crossing strands (each monomer appears to cross at least five times). The assembly presents its hydrophobic residues toward the interior of the bilayer, but its hydrophilic residues provide an aqueous core. The transport involves a small conformational change in which an anion-binding site (involving positively charged residues) can alternate between positions that are topologically in and topologically out.

1996 ◽  
Vol 107 (2) ◽  
pp. 271-291 ◽  
Author(s):  
S Q Liu ◽  
F Y Law ◽  
P A Knauf

To test the hypothesis that amino acid residues in band 3 with titratable positive charges play a role in the binding of anions to the outside-facing transport site, we measured the effects of changing external pH (pH(O)) on the dissociation constant for binding of external iodide to the transport site, K(O)(I). K(O)(I) increased with increasing pH(O), and a significant increase was seen even at pH(O) values as low as 9.9. The dependence of K(O)(I) on pH(O) can be explained by a model with one titratable site with pK 9.5 +/- 0.2 (probably lysine), which increases anion affinity for the external transport site when it is in the positively charged form. A more complex model, analogous to one recently proposed by Bjerrum (1992), with two titratable sites, one with pK 9.3 +/- 0.3 (probably lysine) and another with pK > 11 (probably arginine), gives a slightly better fit to the data. Thus, titratable positively charged residues seem to be functionally important for the binding of substrate anions to the outward-facing anion transport site. In addition, analysis of Dixon plot slopes for L inhibition of Cl- exchange at different pH 0 values, coupled with the assumption that pH(O) has parallel effects on external I- and Cl- binding, indicates that k', the rate-constant for inward translocation of the complex of Cl- with the extracellular transport site, decreases with increasing pH(O). The data are compatible with a model in which titration of the pK 9.3 residue decreases k to 14 +/- 10% of its value at neutral pH(O). This result, however, together with Bjerrum's (1992) observation that the maximum flux J(M)) increases 1.6-fold when this residue is deprotonated, makes quantitative predictions that raise significant questions about the adequacy of the two titratable site ping-pong model or the assumptions used in analyzing the data.


Biochemistry ◽  
1981 ◽  
Vol 20 (18) ◽  
pp. 5095-5105 ◽  
Author(s):  
Ian G. Macara ◽  
Lewis C. Cantley

2021 ◽  
Author(s):  
Daniel E Mattox ◽  
Chris Bailey-Kellogg

Lectin-glycan interactions facilitate inter- and intracellular communication in many processes including protein trafficking, host-pathogen recognition, and tumorigenesis promotion. Specific recognition of glycans by lectins is also the basis for a wide range of applications in areas including glycobiology research, cancer screening, and antiviral therapeutics. To provide a better understanding of the determinants of lectin-glycan interaction specificity and support such applications, this study comprehensively investigates specificity-conferring features of all available lectin-glycan complex structures. Systematic characterization, comparison, and predictive modeling of a set of 221 complementary physicochemical and geometric features representing these interactions highlighted specificity-conferring features with potential mechanistic insight. Univariable comparative analyses with weighted Wilcoxon-Mann-Whitney tests revealed strong statistical associations between binding site features and specificity that are conserved across unrelated lectin binding sites. Multivariable modeling with random forests demonstrated the utility of these features for predicting the identity of bound glycans based on generalized patterns learned from non-homologous lectins. These analyses revealed global determinants of lectin specificity, such as sialic acid glycan recognition in deep, concave binding sites enriched for positively charged residues, in contrast to high mannose glycan recognition in fairly shallow but well-defined pockets enriched for non-polar residues. Focused analysis of hemagglutinin interactions with human-like and avian-like glycans uncovered features representing both known and novel mutations related to shifts in influenza tropism from avian to human tissues. The presented systematic characterization of lectin binding sites provides a novel approach to studying lectin specificity and is a step towards confidently predicting new lectin-glycan interactions.


1985 ◽  
Vol 108 (4) ◽  
pp. 525-531 ◽  
Author(s):  
R. Hartong ◽  
W. M. Wiersinga

Abstract. Binding of [125I]rT3 to rat liver nuclear extracts prepared in 0.25 m sucrose could be abolished by a prior wash of the nuclei with 2.4 m sucrose. Analysis of mixtures containing [125I]rT3 and nuclear extracts (0.25 m sucrose) showed that after incubation for 2 h at 22°C, degradation of rT3 into 3,3'-T2 and I- had taken place. It appears that the presence of 125I- in these mixtures can account for the previously observed 'binding' of [125I]rT3 to these nuclear extracts. Further characterization of the deiodination process in nuclear extracts showed: 1) inactivation by heating, 2) production of equimolar amounts of I- and 3,3'-T2, 3) stimulation by sulfhydryl compounds and inhibition by propylthiouracil in a fashion similar to the microsomal iodothyronine 5'-deiodinase (ping-pong mechanism). We conclude that the observed deiodination of rT3 in hepatic nuclear extracts is of enzymatic nature, due to contamination of the nuclear preparation by microsomal iodothyronine 5'-deiodinase. However, since the nuclei are prepared in the presence of the non-ionic detergent Triton X-100, a nucleus associated deiodinase activity cannot be totally excluded.


Author(s):  
Fanlin Zhou ◽  
Shudong He ◽  
Yongfei Wang ◽  
Hanju Sun ◽  
Yi Zhang

Protein allergens is a health risk for consumption of soybeans. To understand allerginicity mechanism, T cell epitopes of 7 soybean allergens were predicted and screened by abilities to induce cytokine interleukin 4. The relationships among amino acid composition, properties, allergenicity and pepsin hydrolysis sites were analyzed. Among the 138 T cell epitopes identified, YIKDVFRVIPSEVLS, KDVFRVIPSEVLSNS, DVFRVIPSEVLSNSY of Gly m 6.0501 (P04347), and AKADALFKAIEAYLL, ADALFKAIEAYLLAH of Gly m 4.0101 (P26987) were the most possible epitope candidates. In T cell epitopes pattern, the frequencies of amino acids Q, D, E, P and G decreased, while F, I, N, V, K and H increased. Hydrophobic residues at positions p1 and p2 and positively charged residues in positions p13 might contribute to allergenicity. Most of epitopes could be hydrolyzed by pepsin into small polypeptides within 12 residues length, and the anti-digestive epitope regions contained I, V, S, N, and Q residues. T cell epitopes EEQRQQEGVIVELSK from Gly m 5.03 (P25974) showed resistantence to pepsin hydrolysis and would cause a higher Th2 cell response. This research provides basis for the development of hypoallergenic soybean products in the soybean industry as well as for the immunotherapy design for protein allergy.


Sign in / Sign up

Export Citation Format

Share Document