The precursor environment for vascular plant colonization

There is evidence, although inconclusive, that a biologically active soil cover existed long before the late Silurian. The earliest vascular plants may have colonized a land surface containing well-developed soils which were functioning biologically and biochemically in similar ways to modern soils. In any discussion of the late Silurian-early Devonian ‘invasion of the land’, two basic questions arise in relation to the history of the land cover and its soils: (i) Did vascular plants colonize a barren landscape or did biologically functioning soils already exist? (ii) What changes did the vascular plant cover cause to the land surface and its soils? This latter question has been tackled by Retallack (this symposium) and the following is a discussion of some aspects of the former. Many soil-forming processes are purely physical or physico-chemical in origin and examples of such pedogenic modifications of the land surface have now been documented from the Precambrian and lower Palaeozoic (Retallack 1981). However, there is also some evidence that these early soils were biologically active and were associated with microbial communities. Golubic & Campbell (1979) have compared the mid Precambrian microfossil, Eosynechnococcus moorei Hofmann with the extant cyanobacterium Gloeothece coerulea Geitler, which is a subaerial form. They have suggested that prokaryotic communities may have colonized the land surface as long ago as the early Precambrian. Organic-rich palaeosols are known from Blind River Formation of Ontario (Campbell 1979) which is 2.4 Ga old.

2018 ◽  
pp. 149-154

Vera Antonovna Martynenko (17.02.1936–06.01.2018) — famous specialist in the field of studying vascular plant flora and vegetation of the Far North, the Honored worker of the Komi Republic (2006), The Komi Republic State Scientific Award winner (2000). She was born in the town Likhoslavl of the Kali­nin (Tver) region. In 1959, Vera Antonovna graduated from the faculty of soil and biology of the Leningrad State University and then moved to the Komi Branch of USSR Academy of Science (Syktyvkar). From 1969 to 1973 she passed correspondence postgraduate courses of the Komi Branch of USSR Academy of ­Science. In 1974, she received the degree of candidate of biology (PhD) by the theme «Comparative analysis of the boreal flora at the Northeast European USSR» in the Botanical Institute (St. Petersburg). In 1996, Vera Antonovna received the degree of doctor of biology in the Institute of plant and animal ecology (Ekaterinburg) «Flora of the northern and mid subzones of the taiga of the European North-East». The study and conservation of species and coenotical diversity of the plant world, namely the vascular plants flora of the Komi Republic and revealing its transformation under the anthropogenic influence, was in the field of V. A. Martynenko’ scientific interests. She made great contribution to the study of the Komi Republic meadow flora and the pool of medi­cinal plants. She performed inventorying and mapping the meadows of several agricultural enterprises of the Republic, revealed the species composition and places for harvesting medicinal plants and studied their productivity in the natural flora of the boreal zone. The results of her long-term studies were used for making the NPA system and the Red Book of the Komi Republic (1998 and 2009). Vera Antonovna participated in the research of the influence of placer gold mining and oil development on the natural ecosystems of the North, and developed the method of long-term monitoring of plant cover. Results of these works are of high practical value. V. A. Martynenko is an author and coauthor of more than 130 scientific publications. The most important jnes are «Flora of Northeast European USSR» (1974, 1976, and 1977), «Floristic composition of fodder lands of the Northeast Europe» (1989), «The forests of the Komi Republic» (1999), «Forestry of forest resources of the Komi Republic» (2000), «The list of flora of the Yugyd va national park» (2003), «The guide for vascular plants of the Syktyvkar and its vicinities» (2005), «Vascular plants of the Komi Republic» (2008), and «Resources of the natural flora of the Komi Republic» (2014). She also was an author of «Encyclopedia of the Komi Republic» (1997, 1999, and 2000), «Historical and cultural atlas of the Komi Republic» (1997), «Atlas of the Komi Republic» (2001, 2011). V. A. Martynenko made a great contribution to the development of the botanical investigations in the North. Since 1982, during more than 10 years, she was the head of the Department of the Institute of Biology. Three Ph. D. theses have been completed under her leadership. Many years, she worked actively in the Dissertation Council of the Institute of biology Komi Scientific Centre UrB RAS.  The death of Vera Antonovna Martynenko is a heavy and irretrievable loss for the staff of the Institute of Biology. The memory of Vera Antonovna will live in her numerous scientific works, the hearts of students and colleagues.


2014 ◽  
Vol 11 (19) ◽  
pp. 5521-5537 ◽  
Author(s):  
B. Magnússon ◽  
S. H. Magnússon ◽  
E. Ólafsson ◽  
B. D. Sigurdsson

Abstract. Plant colonization and succession on the volcanic island of Surtsey, formed in 1963, have been closely followed. In 2013, a total of 69 vascular plant species had been discovered on the island; of these, 59 were present and 39 had established viable populations. Surtsey had more than twice the species of any of the comparable neighbouring islands, and all of their common species had established on Surtsey. The first colonizers were dispersed by sea, but, after 1985, bird dispersal became the principal pathway with the formation of a seagull colony on the island and consequent site amelioration. This allowed wind-dispersed species to establish after 1990. Since 2007, there has been a net loss of species on the island. A study of plant succession, soil formation and invertebrate communities in permanent plots on Surtsey and on two older neighbouring islands (plants and soil) has revealed that seabirds, through their transfer of nutrients from sea to land, are major drivers of development of these ecosystems. In the area impacted by seagulls, dense grassland swards have developed and plant cover, species richness, diversity, plant biomass and soil carbon become significantly higher than in low-impact areas, which remained relatively barren. A similar difference was found for the invertebrate fauna. After 2000, the vegetation of the oldest part of the seagull colony became increasingly dominated by long-lived, rhizomatous grasses (Festuca, Poa, Leymus) with a decline in species richness and diversity. Old grasslands of the neighbouring islands Elliđaey (puffin colony, high nutrient input) and Heimaey (no seabirds, low nutrient input) contrasted sharply. The puffin grassland of Elliđaey was very dense and species-poor. It was dominated by Festuca and Poa, and very similar to the seagull grassland developing on Surtsey. The Heimaey grassland was significantly higher in species richness and diversity, and had a more even cover of dominants (Festuca/Agrostis/Ranunculus). We forecast that, with continued erosion of Surtsey, loss of habitats and increasing impact from seabirds a lush, species-poor grassland will develop and persist, as on the old neighbouring islands.


2006 ◽  
Vol 63 (2-3) ◽  
pp. 269-321 ◽  
Author(s):  
S. G. M. BRIDGEWATER ◽  
D. J. HARRIS ◽  
C. WHITEFOORD ◽  
A. K. MONRO ◽  
M. G. PENN ◽  
...  

Covering an area of 177,000 hectares, the region known within Belize as the Chiquibul Forest comprises the country's largest forest reserve and includes the Chiquibul Forest Reserve, the Chiquibul National Park and the Caracol Archaeological Reserve. Based on 7047 herbarium and live collections, a checklist of 1355 species of vascular plant is presented for this area, of which 87 species are believed to be new records for the country. Of the 41 species of plant known to be endemic to Belize, four have been recorded within the Chiquibul, and 12 species are listed in The World Conservation Union (IUCN) 2006 Red List of Threatened Species. Although the Chiquibul Forest has been relatively well collected, there are geographical biases in botanical sampling which have focused historically primarily on the limestone forests of the Chiquibul Forest Reserve. A brief review of the collecting history of the Chiquibul is provided, and recommendations are given on where future collecting efforts may best be focused. The Chiquibul Forest is shown to be a significant regional centre of plant diversity and an important component of the Mesoamerican Biological Corridor.


1999 ◽  
Vol 47 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Eviatar Nevo ◽  
Ori Fragman ◽  
Amots Dafni ◽  
Avigdor Beiles

Species diversity of plants was recorded in 1992 and 1993 at seven stations of the “Evolution Canyon” microsite. Higher solar radiation on the South-Facing Slope (SFS) causes warm, xeric savannoid formation versus temperate, cool, mesic, dense maquis on the North-Facing Slope (NFS), and riverine, segetal plant formations on the Valley Bottom (VB). In an area of 7000 m2, we recorded 320 vascular plant species in 217 genera and 59 families. Plant cover varied from 35% (SFS) to 150% (NFS). Annuals predominated among all life forms (61.3% of all species). SFS and NFS varied in species content, sharing only 31–18% of species. Phytogeographical types varied among the two slopes and valley bottom. Inter-and intraslope species composition varied drastically due to differential microclimatic stresses, thereby demonstrating at a microscale natural selection in action.


Soil Research ◽  
1994 ◽  
Vol 32 (3) ◽  
pp. 389 ◽  
Author(s):  
DJ Eldridge ◽  
RSB Greene

Microbiotic crusts are assemblages of non-vascular plants (mosses, liverworts, algae, lichens, fungi, bacteria and cyanobacteria) which form intimate associations with surface soils. They play a major role in infiltration processes through changes to soil physico-chemical properties, and through their influence on soil surface roughness. Whilst some research suggests that they may restrict infiltration, Australian experience is that they are generally associated with enhanced infiltration. Unlike physical soil crusts, microbiotic crusts stabilize the soil against water and wind erosion, increasing landscape stability, particularly in areas of low vascular plant cover. Microbiotic crusts are thus useful indicators of soil surface condition, and cyanobacteria in the crusts fix nitrogen which may be utilized by developing vascular plant seedlings. Little is known, however, about how they interact with vascular plants and soil invertebrates. Their role in rangeland ecosystems has received renewed attention over the past few years with an increasing interest in ecologically sustainable development of arid and semi-arid grazing systems. In this review we discuss the characteristics and distribution of microbiotic crusts in the rangelands of Australia, their roles in soil and ecological processes and the impacts of fire and grazing. Finally we propose a new system for classifying crusts into functional groups and identify areas requiring further investigation.


1978 ◽  
Vol 56 (20) ◽  
pp. 2470-2490 ◽  
Author(s):  
Katherine L. Bell ◽  
L. C. Bliss

Within the northwestern islands of the High Arctic, the vegetation and flora of King Christian Island are very representative. Five plant communities were recognized in a moisture gradient from a moss–rush moist meadow with 22 species of vascular plants and 13% cover (total plant cover 93%) to lichen barrens on low ridges with 8 species of vascular plants and 3% cover (total plant cover 24%). Root systems of 30 of the 34 known vascular plant species were examined. Root:shoot ratios (alive) are generally 0.2 to 0.7. Roots are estimated to live 1.5 years in Phippsia algida, 3.4–3.7 years in Alopecurus alpinus and Puccinellia vaginata, and 7–13 years in Luzula nivalis, L. confuse), and Cerastium arcticum. Optimal root growth occurs at 12 to 20 °C but cold field soils (1 to 3 °C) reduce these rates by 90%. Root growth was also reduced by low soil water potentials (< − 14 bars (1 bar = 100 kPa)), conditions seldom encountered in these sites. Limited root growth due to cold soils is combined with the adaptive advantages of small roots to produce small plants and sparse cover in these polar semidesert lands.


2014 ◽  
Vol 11 (6) ◽  
pp. 9379-9420 ◽  
Author(s):  
B. Magnússon ◽  
S. H. Magnússon ◽  
E. Ólafsson ◽  
B. D. Sigurdsson

Abstract. Plant colonization and succession on Surtsey volcanic island, formed in 1963, have been closely followed. In 2013, a total of 69 vascular plant species had been discovered on the island; of these 59 were present and 39 had established viable populations. Surtsey had more than twice the species of any of the comparable neighbouring islands and all their common species had established on Surtsey. The first colonizers were dispersed by sea, but after 1985 bird-dispersal became the principal pathway with the formation of a seagull colony on the island and consequent site amelioration. This allowed wind-dispersed species to establish after 1990. Since 2007 there has been a net loss of species on the island. A study of plant succession, soil formation and invertebrate communities in permanent plots on Surtsey and on two older neighbouring islands (plants and soil) has revealed that seabirds, through their transfer of nutrients from sea to land, are major drivers of development of these ecosystems. In the area impacted by seagulls dense grassland swards have developed and plant cover, species richness, diversity, plant biomass and soil carbon become significantly higher than in low-impact areas, which remained relatively barren. A similar difference was found for the invertebrate fauna. After 2000, the vegetation of the oldest part of the seagull colony became increasingly dominated by long-lived, rhizomatous grasses (Festuca, Poa, Leymus) with a decline in species richness and diversity. Old grasslands of the neighbouring islands Elliðaey (puffin colony, high nutrient input) and Heimaey (no seabirds, low nutrient input) contrasted sharply. The puffin grassland of Elliðaey was very dense and species-poor. Dominated by Festuca and Poa, it it was very similar to the seagull grassland developing on Surtsey. The Heimaey grassland was significantly higher in species richness and diversity, and had a more even cover of dominants (Festuca/Agrostis/Ranunculus). We forecast that with continued erosion of Surtsey, loss of habitats and increasing impact from seabirds a lush, species poor grassland will develop and persist, as on the old neighbouring islands.


Botany ◽  
2016 ◽  
Vol 94 (11) ◽  
pp. 1041-1051 ◽  
Author(s):  
Line Rochefort ◽  
Marie-Claire LeBlanc ◽  
Vicky Bérubé ◽  
Sandrine Hugron ◽  
Stéphanie Boudreau ◽  
...  

We have developed an approach to restore bogs after peat extraction, but, when sedge-peat layers are exposed, the minerotrophic remnant peat conditions require restoration towards a fen ecosystem. Three restoration techniques, all including rewetting actions, were tested to assist fen vegetation recovery. None of the restoration techniques were effective at establishing fen bryophytes. However, for vascular plants, two techniques gave promising results in terms of species composition, although the vascular plant cover remained lower than in the reference fens. Depending on the site conditions, we suggest applying two restoration techniques to restore peatlands in areas of exposed sedge peat. In areas where sparse cover of fen species may have spontaneously established, rewetting should be carried out to raise water levels and create favourable conditions for their expansion. In areas covered with undesirable species or with inadequate topography for rewetting, surface peat should be remodeled and vegetation introduced. Since mechanized diaspore transfer did not result in a satisfactory cover of fen plants, other means of introduction could be considered, alone or in combination. A complementary fertilization experiment showed that fertilization with phosphorus could be an effective solution to enhance the establishment of mechanically introduced plant diaspores.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1182 ◽  
Author(s):  
Corneliu Tanase ◽  
Sanda Coșarcă ◽  
Daniela-Lucia Muntean

Polyphenols are one of the largest and most widespread groups of secondary metabolites in the plants world. These compounds are of particular interest due to their occurrence and the properties they possess. The main sources of phenolic compounds are fruits and vegetables, but lately, more and more studies refer to woody vascular plants, especially to bark, as an important source of phenolic compounds with a potential biological effect. This study aims to bring together information on the phenolic compounds present in the bark of woody vascular plants by discussing extraction methods, the chemical composition of the extracts and potential biological effects. The literature data used in this paper were collected via PubMed (2004–2019). Search terms were: bark, rhytidome, woody vascular plant, polyphenols, phenolic compounds, biologic activity, antioxidant, immunostimulatory, antimutagenic, antibacterial, anti-inflammatory, and antitumoral. This paper intends to highlight the fact that the polyphenolic extracts obtained from the bark of woody vascular plants represent sources of bioactive compounds with antioxidant, immunostimulatory, antimutagenic, antibacterial properties, etc. Future research directions should be directed towards identification and isolation of bioactive compounds. Consequently, biologically active compounds obtained from the bark of woody plants could be exploited on an industrial scale.


1998 ◽  
Vol 25 (2) ◽  
pp. 283-291
Author(s):  
P.S.M. PHIRI ◽  
D.M. MOORE

Central Africa remained botanically unknown to the outside world up to the end of the eighteenth century. This paper provides a historical account of plant explorations in the Luangwa Valley. The first plant specimens were collected in 1897 and the last serious botanical explorations were made in 1993. During this period there have been 58 plant collectors in the Luangwa Valley with peak activity recorded in the 1960s. In 1989 1,348 species of vascular plants were described in the Luangwa Valley. More botanical collecting is needed with a view to finding new plant taxa, and also to provide a satisfactory basis for applied disciplines such as ecology, phytogeography, conservation and environmental impact assessment.


Sign in / Sign up

Export Citation Format

Share Document