frame orientation
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 15 ◽  
Author(s):  
Janny C. Stapel ◽  
W. Pieter Medendorp

Judgments of the orientation of a visual line with respect to earth vertical are affected by panoramic visual cues. This is illustrated by the rod-and-frame effect (RFE), the finding that the perceived orientation of a luminous rod is biased by the orientation of a surrounding squared frame. In this study, we tested how the uncertainty of frame orientation affects the RFE by asking upright or tilted participants to psychometrically judge the orientation of a briefly flashed rod contained within either a circular frame, a squared frame, or either of two intermediate frame forms, called squircles, presented in various orientations. Results showed a cyclical modulation of frame-induced bias across the range of the square and squircular frame orientations. The magnitude of this bias increased with increasing squaredness of the frame, as if the more unequivocal the orientation cues of the frame, the larger the reliance on them for rod orientation judgments. These findings are explained with a Bayesian optimal integration model in which participants flexibly weigh visual panoramic cues, depending on their orientation reliability, and non-visual cues in the perception of vertical.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lei Zheng ◽  
Jan-Gabriel Dobroschke ◽  
Stefan Pollmann

We investigated if contextual cueing can be guided by egocentric and allocentric reference frames. Combinations of search configurations and external frame orientations were learned during a training phase. In Experiment 1, either the frame orientation or the configuration was rotated, thereby disrupting either the allocentric or egocentric and allocentric predictions of the target location. Contextual cueing survived both of these manipulations, suggesting that it can overcome interference from both reference frames. In contrast, when changed orientations of the external frame became valid predictors of the target location in Experiment 2, we observed contextual cueing as long as one reference frame was predictive of the target location, but contextual cueing was eliminated when both reference frames were invalid. Thus, search guidance in repeated contexts can be supported by both egocentric and allocentric reference frames as long as they contain valid information about the search goal.


2021 ◽  
Author(s):  
Wenqian Du ◽  
Ze Wang ◽  
Etienne Moullet ◽  
Faiz Benamar
Keyword(s):  

2019 ◽  
Vol 122 (2) ◽  
pp. 480-489 ◽  
Author(s):  
Nynke Niehof ◽  
Florian Perdreau ◽  
Mathieu Koppen ◽  
W. Pieter Medendorp

While it has been well established that optostatic and optokinetic cues contribute to the perception of vertical, it is unclear how the brain processes their combined presence with the nonvisual vestibular cues. Using a psychometric approach, we examined the percept of vertical in human participants ( n = 17) with their body and head upright, presented with a visual frame tilted at one of eight orientations (between ±45°, steps of 11.25°) or no frame, surrounded by an optokinetic roll-stimulus (velocity =  ±30°/s or stationary). Both cues demonstrate relatively independent biases on vertical perception, with a sinusoidal modulation by frame orientation of ~4° and a general shift of ~1–2° in the rotation direction of the optic flow. Variability was unaffected by frame orientation but was higher with than without optokinetic rotation. An optimal-observer model in which vestibular, optostatic, and optokinetic cues provide independent sources to vertical perception was unable to explain these data. In contrast, a model in which the optokinetic signal biases the internal representation of gravity, which is then optimally integrated with the optostatic cue, provided a good account, at the individual participant level. We conclude that optostatic and optokinetic cues interact differently with vestibular cues in the neural computations for vertical perception. NEW & NOTEWORTHY Static and dynamic visual cues are known to bias the percept of vertical, but how they interact with vestibular cues remains to be established. Guided by an optimal-observer model, the present results suggest that optokinetic information is combined with vestibular information into a single, vestibular-optokinetic estimate, which is integrated with an optostatically derived estimate of vertical.


2011 ◽  
Author(s):  
Samuel T. Hunter ◽  
Liliya Cushenbery ◽  
Christian Thoroughgood ◽  
Johanna E. Johson ◽  
Gina Scott Ligon

Sign in / Sign up

Export Citation Format

Share Document