scholarly journals Pollen performance before and during the autotrophic–heterotrophic transition of pollen tube growth

2003 ◽  
Vol 358 (1434) ◽  
pp. 1009-1018 ◽  
Author(s):  
Andrew G. Stephenson ◽  
Steven E. Travers ◽  
Jorge I. Mena-Ali ◽  
James A. Winsor

For species with bicellular pollen, the attrition of pollen tubes is often greatest where the style narrows at the transition between stigmatic tissue and the transmitting tissue of the style. In this region, the tubes switch from predominantly autotrophic to predominantly heterotrophic growth, the generative cell divides, the first callose plugs are produced, and, in species with RNase–type self–incompatibility (SI), incompatible tubes are arrested. We review the literature and present new findings concerning the genetic, environmental and stylar influences on the performance of pollen before and during the autotrophic–heterotrophic transition of pollen tube growth. We found that the ability of the paternal sporophyte to provision its pollen during development significantly influences pollen performance during the autotrophic growth phase. Consequently, under conditions of pollen competition, pollen selection during the autotrophic phase is acting on the phenotype of the paternal sporophyte. In a field experiment, using Cucurbita pepo , we found broad–sense heritable variation for herbivore–pathogen resistance, and that the most resistant families produced larger and better performing pollen when the paternal sporophytes were not protected by insecticides, indicating that selection during the autotrophic phase can act on traits that are not expressed by the microgametophyte. In a study of a weedy SI species, Solanum carolinense , we found that the ability of the styles to arrest self–pollen tubes at the autotrophic–heterotrophic transition changes with floral age and the presence of developing fruits. These findings have important implications for selection at the level of the microgametophyte and the evolution of mating systems of plants.

1995 ◽  
Vol 73 (4) ◽  
pp. 583-589 ◽  
Author(s):  
James A. Winsor ◽  
Andrew G. Stephenson

Pollen tube growth rates and pollen tube attrition were examined in Cucurbita pepo plants grown in an experimental garden. Two separate studies were performed utilizing controlled hand-pollinations. First, female flowers were hand-pollinated and collected at intervals over a 22-h period. Examination of stained pollen tubes in these pistils under reflected UV light revealed variation in growth rate: after approximately 7 h, the fastest growing pollen tubes grew at nearly twice the rate of the mass of the pollen tubes. The faster growing tubes reached the top of the ovary well ahead of most of the pollen tubes. Second, density of pollen application was varied and counts of germinated pollen and pollen tubes were made at four points from the stigmatic surface to the receptacle. Attrition was high for all pollen densities, but significantly higher rates occurred at high and medium densities just below the stigmatic surface. Pollen tube attrition at other points in the pistil was associated with constrictions in the stylar tissue and possibly with levels of nutrients in the pistil. Key words: Cucurbita pepo, pollen competition, pollen tube attrition.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Biying Dong ◽  
Qing Yang ◽  
Zhihua Song ◽  
Lili Niu ◽  
Hongyan Cao ◽  
...  

AbstractMature pollen germinates rapidly on the stigma, extending its pollen tube to deliver sperm cells to the ovule for fertilization. The success of this process is an important factor that limits output. The flavonoid content increased significantly during pollen germination and pollen tube growth, which suggests it may play an important role in these processes. However, the specific mechanism of this involvement has been little researched. Our previous research found that hyperoside can prolong the flowering period of Abelmoschus esculentus (okra), but its specific mechanism is still unclear. Therefore, in this study, we focused on the effect of hyperoside in regulating the actin-depolymerizing factor (ADF), which further affects the germination and growth of pollen. We found that hyperoside can prolong the effective pollination period of okra by 2–3-fold and promote the growth of pollen tubes in the style. Then, we used Nicotiana benthamiana cells as a research system and found that hyperoside accelerates the depolymerization of intercellular microfilaments. Hyperoside can promote pollen germination and pollen tube elongation in vitro. Moreover, AeADF1 was identified out of all AeADF genes as being highly expressed in pollen tubes in response to hyperoside. In addition, hyperoside promoted AeADF1-mediated microfilament dissipation according to microfilament severing experiments in vitro. In the pollen tube, the gene expression of AeADF1 was reduced to 1/5 by oligonucleotide transfection. The decrease in the expression level of AeADF1 partially reduced the promoting effect of hyperoside on pollen germination and pollen tube growth. This research provides new research directions for flavonoids in reproductive development.


2013 ◽  
Vol 40 (No. 2) ◽  
pp. 65-71 ◽  
Author(s):  
D. Milatović ◽  
D. Nikolić ◽  
B. Krška

Self-(in)compatibility was tested in 40 new apricot cultivars from European breeding programmes. Pollen-tube growth in pistils from laboratory pollinations was analysed using the fluorescence microscopy. Cultivars were considered self-compatible if at least one pollen tube reached the ovary in the majority of pistils. Cultivars were considered self- incompatible if the growth of pollen tubes in the style stopped along with formation of characteristic swellings. Of the examined cultivars, 18 were self-compatible and 22 were self-incompatible. Fluorescence microscopy provides a relatively rapid and reliable method to determine self-incompatibility in apricot cultivars.      


2021 ◽  
Author(s):  
Patrick Duckney ◽  
Johan T. Kroon ◽  
Martin R. Dixon ◽  
Timothy J. Hawkins ◽  
Michael J. Deeks ◽  
...  

1989 ◽  
Vol 37 (5) ◽  
pp. 429 ◽  
Author(s):  
BM Potts ◽  
JB Marsden-Smedley

The effect of boric acid (0-450 ppm) and sucrose (0-40%) on pollen germination and pollen tube growth in Eucalyptus globulus, E. morrisbyi, E. ovata and E. tirnigera was examined in vitro. Over the con- centrations tested, sucrose had by far the largest effect upon both pollen germination and tube lengths. The optimum sucrose concentration for pollen germination (30%) and pollen tube growth (20%) differed markedly with very little (<lo%) germination occurring in the absence of sucrose. The interaction of sucrose and boric acid was significant. However, in general both pollen germination and pollen tube growth were increased by the addition of up to 100 ppm boric acid, but above this level the response plateauxed. The four species differed significantly in their pattern of response to both boric acid and sucrose and the predicted optima derived from analysis of response surfaces differed between species. The predicted sucrose concentration for optimal germination and growth of E. urnigera pollen was consistently less than the other species and in terms of the optimal level of boric acid for pollen tube growth species can be ranked in the order E. globulus > E. ovata > E. morrisbyi = E. urnigera. Pollen germination and tube growth of all four species on a medium comprising 20% sucrose and 200 ppm boric acid would not differ significantly from the observed maximum response of each species and this could suffice as a generalised medium. However, if only percentage germination is to be assessed 30% sucrose would be preferable. It is argued that subtle interspecific differences in optimal in vitro con- ditions for pollen germination and pollen tube growth are likely to reflect differences in pollen physiology which in vivo may have important implications for the success of hybridisation where pollen competition occurs.


2014 ◽  
Vol 65 (1-2) ◽  
pp. 101-105 ◽  
Author(s):  
Renata Śnieżko ◽  
Krystyna Winiarczyk

After selfpollination of <em>Sinapis alba</em> L. pollen tubes growth is inhibited on the stigma. The pollen grains germinate 3-4 hours after pollination. The pollen give rise to one or more pollen tubes. They grow along the papillae. In the place of contact between the papilla and pollen tube the pellicula is digested. Then the direction of pollen tube growth changes completely. Pollen tubes grow back on the exine of their own pollen grain, or turn into the air. The pollen tubes growth was inhibited in 6-8 hours after selfpollination. After crosspollination usually there is no incompatibility reaction.


Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 156 ◽  
Author(s):  
Nolan Scheible ◽  
Andrew McCubbin

The coordinated growth of pollen tubes through floral tissues to deliver the sperm cells to the egg and facilitate fertilization is a highly regulated process critical to the Angiosperm life cycle. Studies suggest that the concerted action of a variety of signaling pathways underlies the rapid polarized tip growth exhibited by pollen tubes. Ca2+ and small GTPase-mediated pathways have emerged as major players in the regulation of pollen tube growth. Evidence suggests that these two signaling pathways not only integrate with one another but also with a variety of other important signaling events. As we continue to elucidate the mechanisms involved in pollen tube growth, there is a growing importance in taking a holistic approach to studying these pathways in order to truly understand how tip growth in pollen tubes is orchestrated and maintained. This review considers our current state of knowledge of Ca2+-mediated and GTPase signaling pathways in pollen tubes, how they may intersect with one another, and other signaling pathways involved. There will be a particular focus on recent reports that have extended our understanding in these areas.


HortScience ◽  
1992 ◽  
Vol 27 (5) ◽  
pp. 425-427 ◽  
Author(s):  
Gregory A. Lang ◽  
E. James Parrie

Pollen from six southern highbush blueberry cultivars derived from Vaccinium corymbosum L. and one or more other species (V. darrowi Camp, V. ashei Reade, and V. angustifolium Aiton) was incubated on nutrient agar to determine tetrad viability, pollen tube growth rates, and incidence of multiple pollen tube germinations. `Avonblue' pollen had a significantly lower tetrad germination percentage than `Georgiagem', `Flordablue', `Sharpblue', `Gulfcoast', or `O'Neal', all of which had >90% viable tetrads. The in vitro growth rate of `O'Neal' pollen tubes was significantly higher than the growth rates of `Sharpblue' and `Georgiagem pollen tubes. Of those tetrads that were viable, more than two pollen tubes germinated from 83% and 91% of the `Gulfcoast' and `Sharpblue' tetrads, respectively, while only 11% of the `Flordablue' tetrads produced more than two pollen tubes. The total number of pollen tubes germinated per 100 tetrads ranged from 157 (`Flordablue') to 324 (`Sharpblue'), resulting in actual pollen grain viabilities ranging from 39% to 81%. Genetic differences in pollen vigor, as indicated by pollen viability, pollen tube growth rates, and multiple pollen tube germinations, may influence blueberry growers' success in optimizing the beneficial effects of cross-pollination on fruit development.


Sign in / Sign up

Export Citation Format

Share Document