scholarly journals Dual oxidases

2005 ◽  
Vol 360 (1464) ◽  
pp. 2301-2308 ◽  
Author(s):  
Ágnes Donkó ◽  
Zalán Péterfi ◽  
Adrienn Sum ◽  
Thomas Leto ◽  
Miklós Geiszt

Reactive oxygen species (ROS) have an important role in various physiological processes including host defence, mitogenesis, hormone biosynthesis, apoptosis and fertilization. Currently, the most characterized ROS-producing system operates in phagocytic cells, where ROS generated during phagocytosis act in host defence. Recently, several novel homologues of the phagocytic oxidase have been discovered and this protein family is now designated as the NOX/DUOX family of NADPH oxidases. NOX/DUOX enzymes function in a variety of tissues, including colon, kidney, thyroid gland, testis, salivary glands, airways and lymphoid organs. Importantly, members of the enzyme family are also found in non-mammalian species, including Caenorhabditis elegans and sea urchin. The physiological functions of novel NADPH oxidase enzymes are currently largely unknown. This review focuses on our current knowledge about dual oxidases.

2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Albert Van der Vliet

The two DUOX enzymes were originally identified as participating in the production of hydrogen peroxide as a pre-requisite for thyroid hormone biosynthesis in the thyroid gland [6].NOX enzymes function to catalyse the reduction of molecular oxygen to superoxide and various other reactive oxygen species (ROS). They are subunits of the NADPH oxidase complex.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Albert Van der Vliet

The two DUOX enzymes were originally identified as participating in the production of hydrogen peroxide as a pre-requisite for thyroid hormone biosynthesis in the thyroid gland [9].NOX enzymes function to catalyse the reduction of molecular oxygen to superoxide and various other reactive oxygen species (ROS). They are subunits of the NADPH oxidase complex.


The Analyst ◽  
2021 ◽  
Author(s):  
Ya-Nan Wei ◽  
Bo Lin ◽  
Yang Shu ◽  
Jian-Hua Wang

As an indispensable biothiol, cysteine (Cys) plays a critical part in cellular redox homeostasis, pathological and physiological processes. One of the main sources of reactive oxygen species (ROS) in human...


2019 ◽  
Vol 97 (9) ◽  
pp. 902-908 ◽  
Author(s):  
Ghassan Bkaily ◽  
Wassim Najibeddine ◽  
Danielle Jacques

During the development of heart failure in humans and animal models, an increase in reactive oxygen species (ROS) levels was observed. However, there is no information whether this increase of ROS is associated with an increase in the density of specific isoforms of NADPH oxidases (NOXs) 1–5. The objective of this study was to verify whether the densities of NOXs 1–5 change during the development of heart failure. Using the well-known model of cardiomyopathic hamsters, the UM-X 7.1 line, a model that strongly resembles the pathology observed in humans from a morphological and functional point of view, our studies showed that, as in humans, NOXs 1–5 are present in both normal and UM-X7.1 hamster hearts. Even though the densities of NOXs 2 and 5 were unchanged, the levels of both NOXs 1 and 4 significantly decreased in UM-X7.1 hamster hearts during heart failure. These changes were accompanied with a significant increase in NOX3 level. These results suggest that, during heart failure, NOX3 plays a vital role in compensating the decrease of NOXs 1 and 4. This increase in NOX3 may also be responsible, at least in part, for the reported increase in ROS levels in heart failure.


2013 ◽  
Vol 01 (02) ◽  
pp. 085-090 ◽  
Author(s):  
Baljeet Singh ◽  
Shivani Bhickta ◽  
Rajesh Gupta ◽  
Sachin Goyal ◽  
Ram Gupta

AbstractThe human inflammatory periodontal diseases are amongst the most common of chronic diseases. The predominant inflammatory cell (96%) within the healthy connective tissue and epithelium of the gingiva is polymorphonuclear leucocyte (PMNL). Periodontopathic bacteria in the gingivomucosal tissue may functionally activate PMNLs leading to an increased production of reactive oxygen species (ROS). Chronic inflammation subjects the nearby cells to elevated levels of free radicals (ROS) due to extracellular release from phagocytic cells. Antioxidants block the process of oxidation by neutralizing free radicals. In doing so, the antioxidant themselves become oxidized. Because of this, there is a constant need to replenish our antioxidant resources.


2006 ◽  
Vol 34 (5) ◽  
pp. 960-964 ◽  
Author(s):  
R. Dworakowski ◽  
N. Anilkumar ◽  
M. Zhang ◽  
A.M. Shah

Increased oxidative stress plays an important role in the pathophysiology of many diseases such as atherosclerosis, diabetes mellitus, myocardial infarction and heart failure. In addition to the well-known damaging effects of oxygen-free radicals, ROS (reactive oxygen species) also have signalling roles, acting as second messengers that modulate the activity of diverse intracellular signalling pathways and transcription factors, thereby inducing changes in cell phenotype. NADPH oxidases appear to be especially important sources of ROS involved in redox signalling. Seven NADPH oxidase isoforms, known as Noxs (NAPDH oxidases), are expressed in a cell- and tissue-specific fashion. These oxidases are thought to subserve distinct functions as a result of their tightly regulated activation (e.g. by neurohormonal and growth factors and mechanical stimuli) and their specific coupling with distinct downstream signalling pathways. In the present paper, we review the structure and mechanisms of activation of NADPH oxidases and consider their involvement in redox signalling, focusing mainly on the cardiovascular system.


Sign in / Sign up

Export Citation Format

Share Document