scholarly journals Evo-devo and accounting for Darwin's endless forms

2011 ◽  
Vol 366 (1574) ◽  
pp. 2069-2075 ◽  
Author(s):  
Paul M. Brakefield

Evo-devo has led to dramatic advances in our understanding of how the processes of development can contribute to explaining patterns of evolutionary diversification that underlie the endless forms of animal life on the Earth. This is increasingly the case not only for the origins of evolutionary novelties that permit new functions and open up new adaptive zones, but also for the processes of evolutionary tinkering that occur within the subsequent radiations of related species. Evo-devo has time and again yielded spectacular examples of Darwin's notions of common ancestry and of descent with modification. It has also shown that the evolution of endless forms is more about the evolution of the regulatory machinery of ancient genes than the origin and elaboration of new genes. Evolvability, especially with respect to the capacity of a developmental system to evolve and to generate the variation in form for natural selection to screen, has become a pivotal focus of evo-devo. As a consequence, a balancing of the concept of endless forms in morphospace with a greater awareness of the potential for developmental constraints and bias is becoming more general. The prospect of parallel horizons opening up for the evolution of behaviour is exciting; in particular, does Sean Carroll's phrase referring to old genes learning new tricks in the evolution of endless forms apply equally as well to patterns of diversity and disparity in behavioural trait-space?

Author(s):  
Miquel De Renzi

RESUMENLa noción de propósito es inherente a la finalidad (adaptación, función) si se toma ésta como causa principal de las estructuras orgánicas. Éstas surgen a través del desarrollo, que tiene una causalidad propia, sin propósito con respecto al organismo adulto. El desarrollo esta canalizado y sujeto a limitaciones (constraints); por ello, no se alcanzan óptimos adaptativos en general. Sobre tales posibilidades limitadas en variabilidad actúa la selección natural; la modularidad permite combinar selectivamente aspectos independientes, pero siempre dentro de limitaciones. Pueden surgir estructuras no funcionales que llegarán –o no– a constituir exaptaciones, que serán el paso previo a toda adaptación.PALABRAS-CLAVEADAPTACIONISMO, EXAPTACIÓN, CANALIZACIÓN, LIMITACIÓN DE DESARROLLO, MODULARIDADABSTRACTThe notion of design is inherent to finality (adaptation, function) if this last one is taken as the main cause of organic structures. Structures arise throughout development, which has its own causation, decoupled from the design referred to the adult organism. Development is canalized and subjected to constraints; because of this, adaptive optima are not generally reached. Natural selection works on these possibilities of constrained variability; modularity allows the selective combination for independent features, but always within a constrained framework. Nonfunctional structures are expected, which will arrive –or not– to give exaptations, the previous step to any adaptation.KEYWORDSADAPTATIONISM, EXAPTATION, CANALIZATION, DEVELOPMENTAL CONSTRAINTS, MODULARITY


2021 ◽  
Vol 30 (5) ◽  
pp. 497-520
Author(s):  
Zdravka Kostova ◽  

The article discusses successive stages in the evolution of life up to the establishment of the prokaryotic cell emphasizing the transitions from pre-biotic environment to organic precursors, pre-RNA-RNA, RNA-proteins-DNA, DNA-LUCA. They are paired with the development of pre-biotic structural progenitors of a cell - micelles, vesicles, protocells, prokaryotic ancestor, two prokaryotic branches – Eubacteria and Archaebacteria. The driving force is the natural selection (chemical, biochemical and biological), maintaining the correspondence between the emerging structures and their environment.


Diversity ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 415
Author(s):  
Jerald B. Johnson ◽  
Mark C. Belk

Predation is ubiquitous in nature and can be an important component of both ecological and evolutionary interactions. One of the most striking features of predators is how often they cause evolutionary diversification in natural systems. Here, we review several ways that this can occur, exploring empirical evidence and suggesting promising areas for future work. We also introduce several papers recently accepted in Diversity that demonstrate just how important and varied predation can be as an agent of natural selection. We conclude that there is still much to be done in this field, especially in areas where multiple predator species prey upon common prey, in certain taxonomic groups where we still know very little, and in an overall effort to actually quantify mortality rates and the strength of natural selection in the wild.


2017 ◽  
Author(s):  
Alexei V. Tkachenko ◽  
Sergei Maslov

Reduction of information entropy along with ever-increasing complexity are among the key signatures of living matter. Understanding the onset of such behavior in early prebiotic world is essential for solving the problem of origins of life. To elucidate this transition, we study a theoretical model of information-storing heteropolymers capable of template-assisted ligation and subjected to cyclic non-equilibrium driving forces. We discover that this simple physical system undergoes a spontaneous reduction of the information entropy due to the competition of chains for constituent monomers. This natural-selection-like process ultimately results in the survival of a limited subset of polymer sequences. Importantly, the number of surviving sequences remains exponentially large, thus opening up the possibility of further increase in complexity due to Darwinian evolution. We also propose potential experimental implementations of our model using either biopolymers or artificial nano-structures.


2018 ◽  
Vol 68 (3) ◽  
pp. 227-246
Author(s):  
Nico M. van Straalen

AbstractEvolution acts through a combination of four different drivers: (1) mutation, (2) selection, (3) genetic drift, and (4) developmental constraints. There is a tendency among some biologists to frame evolution as the sole result of natural selection, and this tendency is reinforced by many popular texts. “The Naked Ape” by Desmond Morris, published 50 years ago, is no exception. In this paper I argue that evolutionary biology is much richer than natural selection alone. I illustrate this by reconstructing the evolutionary history of five different organs of the human body: foot, pelvis, scrotum, hand and brain. Factors like developmental tinkering, by-product evolution, exaptation and heterochrony are powerful forces for body-plan innovations and the appearance of such innovations in human ancestors does not always require an adaptive explanation. While Morris explained the lack of body hair in the human species by sexual selection, I argue that molecular tinkering of regulatory genes expressed in the brain, followed by positive selection for neotenic features, may have been the driving factor, with loss of body hair as a secondary consequence.


2018 ◽  
Vol 115 (4) ◽  
pp. 750-755 ◽  
Author(s):  
Jan M. Nordbotten ◽  
Simon A. Levin ◽  
Eörs Szathmáry ◽  
Nils C. Stenseth

In this contribution, we develop a theoretical framework for linking microprocesses (i.e., population dynamics and evolution through natural selection) with macrophenomena (such as interconnectedness and modularity within an ecological system). This is achieved by developing a measure of interconnectedness for population distributions defined on a trait space (generalizing the notion of modularity on graphs), in combination with an evolution equation for the population distribution. With this contribution, we provide a platform for understanding under what environmental, ecological, and evolutionary conditions ecosystems evolve toward being more or less modular. A major contribution of this work is that we are able to decompose the overall driver of changes at the macro level (such as interconnectedness) into three components: (i) ecologically driven change, (ii) evolutionarily driven change, and (iii) environmentally driven change.


2017 ◽  
pp. 129-162
Author(s):  
Wilber J. Scott
Keyword(s):  

2005 ◽  
Vol 56 ◽  
pp. 105-124
Author(s):  
Michael Ruse

The homologies of process within morphogenetic fields provide some of the best evidence for evolution—just as skeletal and organ homologies did earlier. Thus, the evidence for evolution is better than ever. The role of natural selection in evolution, however, is seen to play less an important role. It is merely a filter for unsuccessful morphologies generated by development. Population genetics is destined to change if it is not to become as irrelevant to evolution as Newtonian mechanics is to contemporary physics. (Gilbert, Opitz, and Raff 1996, 368)


Sign in / Sign up

Export Citation Format

Share Document