scholarly journals Present and future projections of habitat suitability of the Asian tiger mosquito, a vector of viral pathogens, from global climate simulation

2015 ◽  
Vol 370 (1665) ◽  
pp. 20130554 ◽  
Author(s):  
Y. Proestos ◽  
G. K. Christophides ◽  
K. Ergüler ◽  
M. Tanarhte ◽  
J. Waldock ◽  
...  

Climate change can influence the transmission of vector-borne diseases (VBDs) through altering the habitat suitability of insect vectors. Here we present global climate model simulations and evaluate the associated uncertainties in view of the main meteorological factors that may affect the distribution of the Asian tiger mosquito ( Aedes albopictus ), which can transmit pathogens that cause chikungunya, dengue fever, yellow fever and various encephalitides. Using a general circulation model at 50 km horizontal resolution to simulate mosquito survival variables including temperature, precipitation and relative humidity, we present both global and regional projections of the habitat suitability up to the middle of the twenty-first century. The model resolution of 50 km allows evaluation against previous projections for Europe and provides a basis for comparative analyses with other regions. Model uncertainties and performance are addressed in light of the recent CMIP5 ensemble climate model simulations for the RCP8.5 concentration pathway and using meteorological re-analysis data (ERA-Interim/ECMWF) for the recent past. Uncertainty ranges associated with the thresholds of meteorological variables that may affect the distribution of Ae. albopictus are diagnosed using fuzzy-logic methodology, notably to assess the influence of selected meteorological criteria and combinations of criteria that influence mosquito habitat suitability. From the climate projections for 2050, and adopting a habitat suitability index larger than 70%, we estimate that approximately 2.4 billion individuals in a land area of nearly 20 million km 2 will potentially be exposed to Ae. albopictus . The synthesis of fuzzy-logic based on mosquito biology and climate change analysis provides new insights into the regional and global spreading of VBDs to support disease control and policy making.

2019 ◽  
Vol 32 (13) ◽  
pp. 4089-4102 ◽  
Author(s):  
Ryan J. Kramer ◽  
Brian J. Soden ◽  
Angeline G. Pendergrass

Abstract We analyze the radiative forcing and radiative response at Earth’s surface, where perturbations in the radiation budget regulate the atmospheric hydrological cycle. By applying a radiative kernel-regression technique to CMIP5 climate model simulations where CO2 is instantaneously quadrupled, we evaluate the intermodel spread in surface instantaneous radiative forcing, radiative adjustments to this forcing, and radiative responses to surface warming. The cloud radiative adjustment to CO2 forcing and the temperature-mediated cloud radiative response exhibit significant intermodel spread. In contrast to its counterpart at the top of the atmosphere, the temperature-mediated cloud radiative response at the surface is found to be positive in some models and negative in others. Also, the compensation between the temperature-mediated lapse rate and water vapor radiative responses found in top-of-atmosphere calculations is not present for surface radiative flux changes. Instantaneous radiative forcing at the surface is rarely reported for model simulations; as a result, intermodel differences have not previously been evaluated in global climate models. We demonstrate that the instantaneous radiative forcing is the largest contributor to intermodel spread in effective radiative forcing at the surface. We also find evidence of differences in radiative parameterizations in current models and argue that this is a significant, but largely overlooked, source of bias in climate change simulations.


2014 ◽  
Vol 119 (13) ◽  
pp. 8169-8188 ◽  
Author(s):  
Paul Glantz ◽  
Adam Bourassa ◽  
Andreas Herber ◽  
Trond Iversen ◽  
Johannes Karlsson ◽  
...  

2011 ◽  
Vol 68 (6) ◽  
pp. 1051-1062 ◽  
Author(s):  
Barbara A. Muhling ◽  
Sang-Ki Lee ◽  
John T. Lamkin ◽  
Yanyun Liu

Abstract Muhling, B. A., Lee, S-K., Lamkin, J. T., and Liu, Y. 2011. Predicting the effects of climate change on bluefin tuna (Thunnus thynnus) spawning habitat in the Gulf of Mexico. – ICES Journal of Marine Science, 68: 1051–1062. Atlantic bluefin tuna (BFT) is a highly migratory species that feeds in cold waters in the North Atlantic, but migrates to tropical seas to spawn. Global climate-model simulations forced by future greenhouse warming project that upper-ocean temperatures in the main western Atlantic spawning ground, the Gulf of Mexico (GOM), will increase substantially, potentially altering the temporal and spatial extent of BFT spawning activity. In this study, an ensemble of 20 climate model simulations used in the Intergovernmental Panel for Climate Change fourth Assessment Report (IPCC-AR4) predicted mean temperature changes within the GOM under scenario A1B through to 2100. Associations between adult and larval BFT in the GOM and sea temperatures were defined using 20th century observations, and potential effects of warming on the suitability of the GOM as a spawning ground were quantified. Areas in the GOM with high probabilities of larval occurrence decreased in late spring by 39–61% by 2050 and 93–96% by the end of the 21st century. Conversely, early spring may become more suitable for spawning. BFT are therefore likely to be vulnerable to climate change, and there is potential for significant impacts on spawning and migration behaviours.


2018 ◽  
Vol 52 (5-6) ◽  
pp. 2685-2702 ◽  
Author(s):  
Elisa Palazzi ◽  
Luca Mortarini ◽  
Silvia Terzago ◽  
Jost von Hardenberg

Sign in / Sign up

Export Citation Format

Share Document