scholarly journals Complex structures from patterned cell sheets

2017 ◽  
Vol 372 (1720) ◽  
pp. 20150515 ◽  
Author(s):  
M. Misra ◽  
B. Audoly ◽  
S. Y. Shvartsman

The formation of three-dimensional structures from patterned epithelial sheets plays a key role in tissue morphogenesis. An important class of morphogenetic mechanisms relies on the spatio-temporal control of apical cell contractility, which can result in the localized bending of cell sheets and in-plane cell rearrangements. We have recently proposed a modified vertex model that can be used to systematically explore the connection between the two-dimensional patterns of cell properties and the emerging three-dimensional structures. Here we review the proposed modelling framework and illustrate it through the computational analysis of the vertex model that captures the salient features of the formation of the dorsal appendages during Drosophila oogenesis. This article is part of the themed issue ‘Systems morphodynamics: understanding the development of tissue hardware’.

2018 ◽  
Vol 915 ◽  
pp. 202-206
Author(s):  
Şirin Yazar ◽  
Cem Gürkan Sür ◽  
Birol Solak ◽  
Ömer Eroğlu ◽  
Aşkın Altınoklu ◽  
...  

We present computational analysis of optical nanostructures, including but not limited to frequency-selective surfaces, metamaterials, nanoantennas, nanowires, and photonic crystals. A rigorous implementation based on surface integral equations and the multilevel fast multipole algorithm is developed for the analysis of such three-dimensional complex structures, without resorting to infinity, self-similarity, periodicity or homogeneity assumptions. The developed simulation environment provides accurate analysis of nanooptical structures to expand our knowledge on these important components of the state-of-the-art technology.


2021 ◽  
Author(s):  
Tania Mendonca ◽  
Ana A Jones ◽  
Jose M Pozo ◽  
Sarah Baxendale ◽  
Tanya T Whitfield ◽  
...  

A common feature of morphogenesis is the formation of three-dimensional structures from the folding of two-dimensional epithelial sheets aided by spatio-temporal cell shape changes at the cellular-level. Studying cell shape dynamics and polarised processes that underpin them, requires orienting cells within the epithelial sheet. In epithelia with highly curved surfaces, assigning cell orientation can be difficult to automate in silico . We present ‘Origami’, a MATLAB-based image analysis pipeline to compute oriented cell shape-features. Our automated method accurately computed cell orientation in regions with opposing curvature in synthetic epithelia and fluorescence images of zebrafish embryos. As proof of concept, we identified different cell shape signatures in the developing zebrafish inner ear, where the epithelium deforms in opposite orientations to form different structures. Origami is designed to be user-friendly and is generally applicable to fluorescence images of curved epithelia.


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


2016 ◽  
Vol 136 (3) ◽  
pp. 318-324
Author(s):  
Naoya Miyamoto ◽  
Makoto Koizumi ◽  
Hiroshi Miyao ◽  
Takayuki Kobayashi ◽  
Kojiro Aoki

2019 ◽  
Vol 221 ◽  
pp. 01003
Author(s):  
Pavel Radchenko ◽  
Stanislav Batuev ◽  
Andrey Radchenko

The paper presents results of applying approach to simulation of contact surfaces fracture under high velocity interaction of solid bodies. The algorithm of erosion -the algorithm of elements removing, of new surface building and of mass distribution after elements fracture at contact boundaries is consider. The results of coordinated experimental and numerical studies of fracture of materials under impact are given. Authors own finite element computer software program EFES, allowing to simulate a three-dimensional setting behavior of complex structures under dynamic loads, has been used for the calculations.


2013 ◽  
Vol 19 (2) ◽  
pp. 021102 ◽  
Author(s):  
Shang Wang ◽  
Chih-Hao Liu ◽  
Valery P. Zakharov ◽  
Alexander J. Lazar ◽  
Raphael E. Pollock ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document