scholarly journals Spatial, seasonal and climatic predictive models of Rift Valley fever disease across Africa

2017 ◽  
Vol 372 (1725) ◽  
pp. 20160165 ◽  
Author(s):  
David W. Redding ◽  
Sonia Tiedt ◽  
Gianni Lo Iacono ◽  
Bernard Bett ◽  
Kate E. Jones

Understanding the emergence and subsequent spread of human infectious diseases is a critical global challenge, especially for high-impact zoonotic and vector-borne diseases. Global climate and land-use change are likely to alter host and vector distributions, but understanding the impact of these changes on the burden of infectious diseases is difficult. Here, we use a Bayesian spatial model to investigate environmental drivers of one of the most important diseases in Africa, Rift Valley fever (RVF). The model uses a hierarchical approach to determine how environmental drivers vary both spatially and seasonally, and incorporates the effects of key climatic oscillations, to produce a continental risk map of RVF in livestock (as a proxy for human RVF risk). We find RVF risk has a distinct seasonal spatial pattern influenced by climatic variation, with the majority of cases occurring in South Africa and Kenya in the first half of an El Niño year. Irrigation, rainfall and human population density were the main drivers of RVF cases, independent of seasonal, climatic or spatial variation. By accounting more subtly for the patterns in RVF data, we better determine the importance of underlying environmental drivers, and also make space- and time-sensitive predictions to better direct future surveillance resources. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Warren S. D. Tennant ◽  
Eric Cardinale ◽  
Catherine Cêtre-Sossah ◽  
Youssouf Moutroifi ◽  
Gilles Le Godais ◽  
...  

AbstractThe persistence mechanisms of Rift Valley fever (RVF), a zoonotic arboviral haemorrhagic fever, at both local and broader geographical scales have yet to be fully understood and rigorously quantified. We developed a mathematical metapopulation model describing RVF virus transmission in livestock across the four islands of the Comoros archipelago, accounting for island-specific environments and inter-island animal movements. By fitting our model in a Bayesian framework to 2004–2015 surveillance data, we estimated the importance of environmental drivers and animal movements on disease persistence, and tested the impact of different control scenarios on reducing disease burden throughout the archipelago. Here we report that (i) the archipelago network was able to sustain viral transmission in the absence of explicit disease introduction events after early 2007, (ii) repeated outbreaks during 2004–2020 may have gone under-detected by local surveillance, and (iii) co-ordinated within-island control measures are more effective than between-island animal movement restrictions.


Author(s):  
Johanna Lindahl ◽  
Bernard Bett ◽  
Timothy Robinson ◽  
Delia Grace

Rift Valley fever is a severe disease affecting both humans and animals. The Rift Valley fever virus can be transmitted by body fluids, and the most common way for humans to get infected is from animals. The virus is also vector-borne and can be transmitted by many species of mosquitoes. As with other vector-borne diseases, the epidemiology may vary in response to environmental changes. Here the effects of climate and land use changes on Rift Valley fever, as well as on other vector-borne diseases, are discussed. The effect of irrigation in East Africa on inter-epidemic transmission of RVF is discussed in greater detail, followed by recommendations for future research and actions.


Author(s):  
Johanna Lindahl ◽  
Bernard Bett ◽  
Timothy Robinson ◽  
Delia Grace

Rift Valley fever is a severe disease affecting both humans and animals. The Rift Valley fever virus can be transmitted by body fluids, and the most common way for humans to get infected is from animals. The virus is also vector-borne and can be transmitted by many species of mosquitoes. As with other vector-borne diseases, the epidemiology may vary in response to environmental changes. Here the effects of climate and land use changes on Rift Valley fever, as well as on other vector-borne diseases, are discussed. The effect of irrigation in East Africa on inter-epidemic transmission of RVF is discussed in greater detail, followed by recommendations for future research and actions.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Saul C. Mpeshe ◽  
Livingstone S. Luboobi ◽  
Yaw Nkansah-Gyekye

A deterministic SEIR model of rift valley fever (RVF) with climate change parameters was considered to compute the basic reproduction numberℛ0and investigate the impact of temperature and precipitation onℛ0. To study the effect of model parameters toℛ0, sensitivity and elasticity analysis ofℛ0were performed. When temperature and precipitation effects are not considered,ℛ0is more sensitive to the expected number of infectedAedesspp. due to one infected livestock and more elastic to the expected number of infected livestock due to one infectedAedesspp. When climatic data are used,ℛ0is found to be more sensitive and elastic to the expected number of infected eggs laid byAedesspp. via transovarial transmission, followed by the expected number of infected livestock due to one infectedAedesspp. and the expected number of infectedAedesspp. due to one infected livestock for both regions Arusha and Dodoma. These results call for attention to parameters regarding incubation period, the adequate contact rate ofAedesspp. and livestock, the infective periods of livestock andAedesspp., and the vertical transmission inAedesspecies.


2009 ◽  
Vol 4 (5) ◽  
pp. 322-328 ◽  
Author(s):  
Tomohiko Takasaki ◽  
◽  
Akira Kotaki ◽  
Chang-Kweng Lim ◽  
Shigeru Tajima ◽  
...  

Arthropod-borne infections carried by mosquitoes and ticks are difficult to eradicate, once rooted, and have frequently caused wide-area epidemics such as dengue fever, West Nile fever, chikungunya fever, yellow fever, Japanese encephalitis and Rift Valley fever. Factors such as global warming and overpopulation have aggravated urban epidemics caused by dengue and chikungunya viruses. Measures against arthropods have their limitations, however, so nonepidemic areas must be protected against invasion by vector-borne diseases through quarantine, education and effective vaccination.


Author(s):  
Giovanni Lo Iacono ◽  
Gordon L. Nichols

The introduction of pasteurization, antibiotics, and vaccinations, as well as improved sanitation, hygiene, and education, were critical in reducing the burden of infectious diseases and associated mortality during the 19th and 20th centuries and were driven by an improved understanding of disease transmission. This advance has led to longer average lifespans and the expectation that, at least in the developed world, infectious diseases were a problem of the past. Unfortunately this is not the case; infectious diseases still have a significant impact on morbidity and mortality worldwide. Moreover, the world is witnessing the emergence of new pathogens, the reemergence of old ones, and the spread of antibiotic resistance. Furthermore, effective control of infectious diseases is challenged by many factors, including natural disasters, extreme weather, poverty, international trade and travel, mass and seasonal migration, rural–urban encroachment, human demographics and behavior, deforestation and replacement with farming, and climate change. The importance of environmental factors as drivers of disease has been hypothesized since ancient times; and until the late 19th century, miasma theory (i.e., the belief that diseases were caused by evil exhalations from unhealthy environments originating from decaying organic matter) was a dominant scientific paradigm. This thinking changed with the microbiology era, when scientists correctly identified microscopic living organisms as the pathogenic agents and developed evidence for transmission routes. Still, many complex patterns of diseases cannot be explained by the microbiological argument alone, and it is becoming increasingly clear that an understanding of the ecology of the pathogen, host, and potential vectors is required. There is increasing evidence that the environment, including climate, can affect pathogen abundance, survival, and virulence, as well as host susceptibility to infection. Measuring and predicting the impact of the environment on infectious diseases, however, can be extremely challenging. Mathematical modeling is a powerful tool to elucidate the mechanisms linking environmental factors and infectious diseases, and to disentangle their individual effects. A common mathematical approach used in epidemiology consists in partitioning the population of interest into relevant epidemiological compartments, typically individuals unexposed to the disease (susceptible), infected individuals, and individuals who have cleared the infection and become immune (recovered). The typical task is to model the transitions from one compartment to another and to estimate how these populations change in time. There are different ways to incorporate the impact of the environment into this class of models. Two interesting examples are water-borne diseases and vector-borne diseases. For water-borne diseases, the environment can be represented by an additional compartment describing the dynamics of the pathogen population in the environment—for example, by modeling the concentration of bacteria in a water reservoir (with potential dependence on temperature, pH, etc.). For vector-borne diseases, the impact of the environment can be incorporated by using explicit relationships between temperature and key vector parameters (such as mortality, developmental rates, biting rate, as well as the time required for the development of the pathogen in the vector). Despite the tremendous advancements, understanding and mapping the impact of the environment on infectious diseases is still a work in progress. Some fundamental aspects, for instance, the impact of biodiversity on disease prevalence, are still a matter of (occasionally fierce) debate. There are other important challenges ahead for the research exploring the potential connections between infectious diseases and the environment. Examples of these challenges are studying the evolution of pathogens in response to climate and other environmental changes; disentangling multiple transmission pathways and the associated temporal lags; developing quantitative frameworks to study the potential effect on infectious diseases due to anthropogenic climate change; and investigating the effect of seasonality. Ultimately, there is an increasing need to develop models for a truly “One Health” approach, that is, an integrated, holistic approach to understand intersections between disease dynamics, environmental drivers, economic systems, and veterinary, ecological, and public health responses.


2020 ◽  
Vol 117 (39) ◽  
pp. 24567-24574 ◽  
Author(s):  
Raphaëlle Métras ◽  
W. John Edmunds ◽  
Chouanibou Youssouffi ◽  
Laure Dommergues ◽  
Guillaume Fournié ◽  
...  

Rift Valley fever (RVF) is an emerging, zoonotic, arboviral hemorrhagic fever threatening livestock and humans mainly in Africa. RVF is of global concern, having expanded its geographical range over the last decades. The impact of control measures on epidemic dynamics using empirical data has not been assessed. Here, we fitted a mathematical model to seroprevalence livestock and human RVF case data from the 2018–2019 epidemic in Mayotte to estimate viral transmission among livestock, and spillover from livestock to humans through both direct contact and vector-mediated routes. Model simulations were used to assess the impact of vaccination on reducing the epidemic size. The rate of spillover by direct contact was about twice as high as vector transmission. Assuming 30% of the population were farmers, each transmission route contributed to 45% and 55% of the number of human infections, respectively. Reactive vaccination immunizing 20% of the livestock population reduced the number of human cases by 30%. Vaccinating 1 mo later required using 50% more vaccine doses for a similar reduction. Vaccinating only farmers required 10 times as more vaccine doses for a similar reduction in human cases. Finally, with 52.0% (95% credible interval [CrI] [42.9–59.4]) of livestock immune at the end of the epidemic wave, viral reemergence in the next rainy season (2019–2020) is unlikely. Coordinated human and animal health surveillance, and timely livestock vaccination appear to be key to controlling RVF in this setting. We furthermore demonstrate the value of a One Health quantitative approach to surveillance and control of zoonotic infectious diseases.


Sign in / Sign up

Export Citation Format

Share Document