scholarly journals Bookkeeping of insect herbivory trends in herbarium specimens of purple loosestrife ( Lythrum salicaria )

2018 ◽  
Vol 374 (1763) ◽  
pp. 20170398 ◽  
Author(s):  
Caroline Beaulieu ◽  
Claude Lavoie ◽  
Raphaël Proulx

The potential use of herbarium specimens to detect herbivory trends is enormous but largely untapped. The objective of this study was to reconstruct the long-term herbivory pressure on the Eurasian invasive plant, purple loosestrife ( Lythrum salicaria ), by evaluating leaf damage over 1323 specimens from southern Québec (Canada). The hypothesis tested is that that the prevalence of herbivory damage on purple loosestrife is low during the invasion phase and increases throughout the saturation phase. Historical trends suggest a gradual increase in hole feeding and margin feeding damage from 1883 to around 1940, followed by a period of relative stability. The percentage of specimens with window feeding damage did not begin to increase until the end of the twentieth century, from 3% (2–6%) in 1990 to 45% (14–81%) in 2015. Temporal changes in the frequency of window feeding damage support the hypothesis of an increasing herbivory pressure by recently introduced insects. This study shows that leaf damage made by insects introduced for the biocontrol of purple loosestrife, such as coleopterans of the Neogalerucella genus, can be assessed from voucher specimens. Herbaria are a rich source in information that can be used to answer questions related to plant-insect interactions in the context of biological invasions and biodiversity changes. This article is part of the theme issue ‘Biological collections for understanding biodiversity in the Anthropocene’.

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Martin M. Gossner ◽  
Ludwig Beenken ◽  
Kirstin Arend ◽  
Dominik Begerow ◽  
Derek Peršoh

AbstractPlants can be severely affected by insect herbivores and phytopathogenic fungi, but interactions between these plant antagonists are poorly understood. We analysed the impact of feeding damage by the abundant herbivore Orchestes fagi on infection rates of beech (Fagus sylvatica) leaves with Petrakia liobae, an invasive plant pathogenic fungus. The fungus was not detected in hibernating beetles, indicating that O. fagi does not serve as vector for P. liobae, at least not between growing seasons. Abundance of the fungus in beech leaves increased with feeding damage of the beetle and this relationship was stronger for sun-exposed than for shaded leaves. A laboratory experiment revealed sun-exposed leaves to have thicker cell walls and to be more resistant to pathogen infection than shaded leaves. Mechanical damage significantly increased frequency and size of necroses in the sun, but not in shade leaves. Our findings indicate that feeding damage of adult beetles provides entry ports for fungal colonization by removal of physical barriers and thus promotes infection success by pathogenic fungi. Feeding activity by larvae probably provides additional nutrient sources or eases access to substrates for the necrotrophic fungus. Our study exemplifies that invasive pathogens may benefit from herbivore activity, which may challenge forest health in light of climate change.


Paleobiology ◽  
2021 ◽  
pp. 1-22
Author(s):  
Anshuman Swain ◽  
S. Augusta Maccracken ◽  
William F. Fagan ◽  
Conrad C. Labandeira

Abstract Plant–insect associations have been a significant component of terrestrial ecology for more than 400 Myr. Exploring these interactions in the fossil record through novel perspectives provides a window into understanding evolutionary and ecological forces that shaped these interactions. For the past several decades, researchers have documented, described, and categorized fossil evidence of these interactions. Drawing on powerful tools from network science, we propose here a bipartite network representation of fossilized plants and their herbivore-induced leaf damage to understand late Paleozoic plant–insect interactions at the local community level. We focus on four assemblages from north-central Texas, but the methods used in this work are general and can be applied to any well-preserved fossil flora. Network analysis can address key questions in the evolution of insect herbivory that often would be difficult to summarize using standard herbivory metrics.


2021 ◽  
Author(s):  
Laura A. Jenny ◽  
Lori R. Shapiro ◽  
Charles C. Davis ◽  
T. Jonathan Davies ◽  
Naomi E. Pierce ◽  
...  

PREMISE: Quantifying how closely related plant species differ in susceptibility to insect herbivory is important for our understanding of variation in plant-insect ecological interactions and evolutionary pressures on plant functional traits. However, empirically measuring in situ variation in herbivory over the entire geographic range where a plant-insect complex occurs is logistically difficult. Recently, new methods have been developed to use herbarium specimens to investigate patterns in plant-insect interactions across geographic areas, and during periods of accelerating anthropogenic change. Such investigations can provide insights into changes in herbivory intensity and phenology in plants that are of ecological and agricultural importance. METHODS: Here, we analyze 274 pressed herbarium samples from all 14 species in the economically important plant genus Cucurbita (Cucurbitaceae) to investigate variation in herbivory damage. This collection is comprised of specimens of wild, undomesticated Cucurbita that were collected from across their native range in the Neotropics and subtropics, and Cucurbita cultivars that were collected from both within their native range and from locations where they have been introduced for agriculture in temperate Eastern North America. RESULTS: We find that herbivory is common on individuals of all Cucurbita species collected from throughout their geographic ranges; however, estimates of herbivory varied considerably among individuals, with greater damage observed in specimens collected from unmanaged habitat. We also find evidence that mesophytic species accrue more insect damage than xerophytic species. CONCLUSIONS: Our study demonstrates that herbarium specimens are a useful resource for understanding ecological interactions between domesticated crop plants and co-evolved insect herbivores.


2013 ◽  
Vol 126 (4) ◽  
pp. 306 ◽  
Author(s):  
Cory J. Lindgren ◽  
David Walker

Purple Loosestrife (Lythrum salicaria) is an invasive plant introduced into North America in the early 1800s. It has since spread into the prairie provinces of Canada (Manitoba, Saskatchewan, and Alberta). It invades wetland habitats, marshes, riparian areas, and natural areas, and it outcompetes native wetland vegetation. In this study we modelled the potential distribution of Purple Loosestrife in the Prairies, explored which suites of predictive variables produced the best ecological niche models, and explored two different approaches to the partitioning of data in evaluating models. We used a number of performance measures and expert evaluation to select our best models. The best model was developed using a suite of climate variables and growing degree-days as the predictive variables and by partitioning testing and training data using stratified random sampling. The model indicated that Purple Loosestrife has not yet reached its full potential distribution in the Prairies. The modelling techniques presented in this paper may be used to predict the potential distribution of other emerging invasive plants, and the results can be used to optimize early detection and surveillance strategies for Purple Loosestrife in areas of the Prairies.


Author(s):  
Keenan Randall ◽  
Ty Greene ◽  
Melissa Lee ◽  
Carlyn McNabb

Purple loosestrife (Lythrum salicaria) is an invasive plant species that has affected agriculture and wildlife across Canada. The weed is not native to Canada; however in municipalities like Kingston and the surrounding area, it has caused tangible problems. We will strive to engage a government partner (City of Kingston), community organization (ON Invasive Species Awareness Program), and a local resident throughout the completion of our research and regarding the viability of solutions proposed. First, we will examine the origins of the plant in Canada, emphasizing the reproductive characteristics that make the purple loosestrife a powerfully invasive species. Next, we will analyze the impact of the purple loosestrife from three perspectives: (1) the impact on native plant communities; (2) the impact on native animal communities; (3) the impact on human life. We will then evaluate current bio management controls, as utilized by other governments, such as the introduction of another foreign species as a control agent. Specifically, we will examine the potential control systems using the following criteria: (1) ability to control the invasive species; (2) feasibility and cost; and (3) direct and indirect negative impacts. Finally, we will propose a comprehensive strategy for each organization moving forward, allowing for increased community collaboration and, ideally, the elimination and/or control of the invasive species.


Weed Science ◽  
1994 ◽  
Vol 42 (1) ◽  
pp. 128-133 ◽  
Author(s):  
Bernd Blossey ◽  
Dieter Schroeder ◽  
Stephen D. Hight ◽  
Richard A. Malecki

Introduction of purple loosestrife into North America and its spread into wetlands has led to the degradation of these important habitats for wildlife. Conventional control efforts are unsuccessful in providing long-term control. A classical biological control program offers the best chance for reducing the numbers of this invasive plant and improving regeneration of the native flora and fauna. European studies demonstrated that the root boring weevil Hylobius transversovittatus is highly host specific to the target weed. Attack of two test plant species (winged lythrum and swamp loosestrife) during host range screening was most likely due to artificial test conditions. An environmental assessment of the potential effects of the release of the purple loosestrife borer in North America indicated that benefits outweigh any potential negative impact Therefore its field release was approved in 1992.


2006 ◽  
Vol 86 (2) ◽  
pp. 569-589 ◽  
Author(s):  
Nicholas A. Page ◽  
Ronald E. Wall ◽  
Stephen J. Darbyshire ◽  
Gerald A. Mulligan

Heracleum mantegazzianum (giant hogweed) is an invasive alien plant of management concern in southern Canada where it has escaped from horticulture and established and spread in natural, ruderal, and agricultural ecosystems. It poses a threat to natural ecosystems and human health, and is also a weed in agricultural and urban areas. It is a member of the Carrot family (Apiaceae) and is closely related to the native species Heracleum maximum Bartram (cow-parsnip). It is a monocarpic perennial, which generally flowers in its 3rd or 4th year. Large size, leaf shape, dark reddish pigments in patches on stems and petioles, and fruit characteristics readily distinguish H. mantegazzianum from other plants in Canada. It is increasingly common in riparian areas, floodplains, and forest edges in or near urban areas in southwestern British Columbia and southern Ontario. Based on herbarium specimens, H. mantegazzianum was first recorded in Ontario in 1949, British Columbia in 1964, Nova Scotia in 1980, Quebec in 1990, and New Brunswick in 2000. The development of dense stands of H. mantegazzianum can also reduce the richness of native plants. Contact with H. mantegazzianum can cause phytophotodermatitis, a serious skin inflammation caused by UV photo-activation of furanocoumarins present in the sap. Control methods include herbicide application, mechanical cutting, and animal grazing, but strategies to address seed dispersal and re-establishment from dormant seed must also be adopted. Widespread establishment in southern Canada suggests that eradication is unlikely. However, range expansion and rapid population growth can be prevented through strategic management including public education. Key words: Giant hogweed, Heracleum mantegazzianum, Apiaceae, HERMZ, invasive plant, weed biology, furanocoumarins


Sign in / Sign up

Export Citation Format

Share Document