scholarly journals Detection of a novel Borna disease virus-encoded 10 kDa protein in infected cells and tissues.

1997 ◽  
Vol 78 (10) ◽  
pp. 2459-2466 ◽  
Author(s):  
T Wehner ◽  
H Becht ◽  
K Frese ◽  
J A Richt ◽  
C Herden ◽  
...  
2000 ◽  
Vol 81 (8) ◽  
pp. 1947-1954 ◽  
Author(s):  
Christian Jehle ◽  
W. Ian Lipkin ◽  
Peter Staeheli ◽  
Rosa M. Marion ◽  
Martin Schwemmle

Borna disease virus (BDV) is a non-segmented, negative-strand RNA virus that replicates and transcribes its genome in the nucleus of infected cells. It uses the cellular splicing machinery to generate a set of alternatively spliced mRNAs from the 2·8 and 7·1 kb primary transcripts, each harbouring two introns. To determine whether splicing of these transcripts is regulated by viral factors, the extent of splicing was studied in infected cells and COS-7 cells transiently transfected with plasmids encoding the 2·8 kb RNA of BDV. Unspliced RNA was found to be the most abundant RNA species in infected cells, whereas viral transcripts lacking both introns were only found in minute amounts. In sharp contrast, plasmid-derived 2·8 kb RNA was predominantly intron 1-spliced and double-spliced. Co-expression of the BDV proteins P, N and X did not influence splicing of plasmid-expressed 2·8 kb RNA. Furthermore, the splicing pattern did not change when the 2·8 kb RNA was expressed in BDV-infected cells. Based on these results we speculate that splicing of authentic BDV transcripts is tightly linked to transcription by the viral polymerase.


1998 ◽  
Vol 72 (1) ◽  
pp. 783-788 ◽  
Author(s):  
Daniel Gonzalez-Dunia ◽  
Beatrice Cubitt ◽  
Juan Carlos de la Torre

ABSTRACT We have investigated the entry pathway of Borna disease virus (BDV). Virus entry was assessed by detecting early viral replication and transcription. Lysosomotropic agents (ammonium chloride, chloroquine, and amantadine), as well as energy depletion, prevented BDV infection, indicating that BDV enters host cells by endocytosis and requires an acidic intracellular compartment to allow membrane fusion and initiate infection. Consistent with this hypothesis, we observed that BDV-infected cells form extensive syncytia upon low-pH treatment. Entry of enveloped viruses into animal cells usually requires the membrane-fusing activity of viral surface glycoproteins (GPs). BDV GP is expressed as two products of 84 and 43 kDa (GP-84 and GP-43, respectively). We show here that only GP-43 is present at the surface of BDV-infected cells and therefore is likely the viral polypeptide responsible for triggering fusion events. We also present evidence that GP-43, which corresponds to the C terminus of GP-84, is generated by cleavage of GP-84 by the cellular protease furin. Hence, we propose that BDV GP-84 is involved in attachment to the cell surface receptor whereas its furin-cleaved product, GP-43, is involved in pH-dependent fusion after internalization of the virion by endocytosis.


2002 ◽  
Vol 76 (16) ◽  
pp. 8460-8467 ◽  
Author(s):  
Michelle Portlance Walker ◽  
W. Ian Lipkin

ABSTRACT Borna disease virus (BDV) is a nonsegmented negative-strand RNA virus that replicates and transcribes its genome in the nucleus of infected cells. BDV proteins involved in replication and transcription must pass through the nuclear envelope to associate with the genomic viral RNA. The RNA-dependent RNA polymerase (L) of BDV is postulated to be the catalytic enzyme of replication and transcription. We demonstrated previously that BDV L localizes to the nucleus of BDV-infected cells and L-transfected cells. Nuclear localization of the protein presupposes the presence of a nuclear localization signal (NLS) within its primary amino acid sequence or cotransport to the nucleus with another karyophilic protein. Because L localized to the nucleus in the absence of other viral proteins, we investigated the possibility that L contains an NLS. The minimal sequence required for nuclear localization of L was identified by analyzing the subcellular distribution of deletion mutants of L fused to a flag epitope tag or β-galactosidase. Although the majority of the L fusion proteins localized to the cytoplasm of transfected BSR-T7 cells, a strong NLS (844RVVKLRIAP852) with basic and proline residues was identified. Mutation of this sequence resulted in cytoplasmic distribution of L, confirming that this sequence was necessary and sufficient to drive the nuclear localization of L.


1999 ◽  
Vol 144 (10) ◽  
pp. 1937-1946 ◽  
Author(s):  
T. Mizutani ◽  
H. Inagaki ◽  
D. Hayasaka ◽  
S. Shuto ◽  
N. Minakawa ◽  
...  

2000 ◽  
Vol 74 (7) ◽  
pp. 3413-3417 ◽  
Author(s):  
Tahir H. Malik ◽  
Masahiko Kishi ◽  
Patrick K. Lai

ABSTRACT The Borna disease virus (BDV) is the prototype member of the Bornaviridae, and it replicates in the cell nucleus. The BDV p24P and p40N proteins carry nuclear localization signals (NLS) and are found in the nuclei of infected cells. The BDV p10 protein does not have an NLS, but it binds with P and/or N and is translocated to the nucleus. Hence, p10 may play a role in the replication of BDV in the cell nucleus. Here, we show that the P-binding domain is located in the N terminus of p10 and that S3 and L16 are important for the interaction.


2001 ◽  
Vol 75 (18) ◽  
pp. 8742-8751 ◽  
Author(s):  
Wataru Kamitani ◽  
Yuko Shoya ◽  
Takeshi Kobayashi ◽  
Makiko Watanabe ◽  
Byeong-Jae Lee ◽  
...  

ABSTRACT The Borna disease virus (BDV) p24 phosphoprotein is an abundant protein in BDV-infected cultured cells and animal brains. Therefore, there is a possibility that binding of the p24 protein to cellular factor(s) induces functional alterations of infected neural cells in the brain. To identify a cellular protein(s) that interacts with BDV p24 protein, we performed far-Western blotting with extracts from various cell lines. Using recombinant p24 protein as a probe, we detected a 30-kDa protein in all cell lines examined. Binding between the 30-kDa and BDV p24 proteins was also demonstrated using BDV p24 affinity and ion-exchange chromatography columns. Microsequence analysis of the purified 30-kDa protein revealed that its N terminus showed complete homology with rat amphoterin protein, which is a neurite outgrowth factor abundant in the brain during development. Mammalian two-hybrid and immunoprecipitation analyses also confirmed that amphoterin is a specific target for the p24 protein in vivo. Furthermore, we showed that infection by BDV, as well as purified p24 protein in the medium, significantly decreased cell process outgrowth of cells grown on laminin, indicating the functional inhibition of amphoterin by interaction with the p24 protein. Immunohistochemical analysis revealed decreased levels of amphoterin protein at the leading edges of BDV-infected cells. Moreover, the expression of the receptor for advanced glycation end products, of which the extracellular moiety is a receptor for amphoterin, was not significantly activated in BDV-infected cells during the process of extension, suggesting that the secretion of amphoterin from the cell surface is inhibited by the binding of the p24 protein. These results suggested that BDV infection may cause direct damage in the developing brain by inhibiting the function of amphoterin due to binding by the p24 phosphoprotein.


2007 ◽  
Vol 81 (11) ◽  
pp. 5497-5507 ◽  
Author(s):  
Sonja Schmid ◽  
Daniel Mayer ◽  
Urs Schneider ◽  
Martin Schwemmle

ABSTRACT The phosphoprotein P of Borna disease virus (BDV) is an essential cofactor of the viral RNA-dependent RNA polymerase. It is preferentially phosphorylated at serine residues 26 and 28 by protein kinase C ε (PKCε) and, to a lesser extent, at serine residues 70 and 86 by casein kinase II (CKII). To determine whether P phosphorylation is required for viral polymerase activity, we generated P mutants lacking either the PKCε or the CKII phosphate acceptor sites by replacing the corresponding serine residues with alanine (A). Alternatively, these sites were replaced by aspartic acid (D) to mimic phosphorylation. Functional characterization of the various mutants in the BDV minireplicon assay revealed that D substitutions at the CKII sites inhibited the polymerase-supporting activity of P, while A substitutions maintained wild-type activity. Likewise, D substitutions at the PKC sites did not impair the cofactor function of BDV-P, whereas A substitutions at these sites led to increased activity. Interestingly, recombinant viruses could be rescued only when P mutants with modified PKCε sites were used but not when both CKII sites were altered. PKCε mutant viruses showed a reduced capacity to spread in cell culture, while viral RNA and protein expression levels in persistently infected cells were almost normal. Further mutational analyses revealed that substitutions at individual CKII sites were, with the exception of a substitution of A for S86, detrimental for viral rescue. These data demonstrate that, in contrast to other viral P proteins, the cofactor activity of BDV-P is negatively regulated by phosphorylation.


2005 ◽  
Vol 79 (4) ◽  
pp. 2033-2041 ◽  
Author(s):  
Makiko Yamashita ◽  
Wataru Kamitani ◽  
Hideyuki Yanai ◽  
Naohiro Ohtaki ◽  
Yohei Watanabe ◽  
...  

ABSTRACT Borna disease virus (BDV) is a highly neurotropic RNA virus that causes neurological disorders in many vertebrate species. Although BDV readily establishes lasting persistence, persistently infected cells maintain an apparently normal cell phenotype in terms of morphology, viability, and proliferation. In this study, to understand the regulation of stress responses in BDV infection, we investigated the expression of heat shock proteins (HSPs) in glial cells persistently infected with BDV. Interestingly, we found that BDV persistence did not upregulate HSP70 expression even in cells treated with heat stress. Furthermore, BDV-infected glial cells exhibited rapid rounding and detachment from the culture plate under various stressful conditions. Immunofluorescence analysis demonstrated that heat stress rapidly disrupts the cell cytoskeleton only in persistently infected cells, suggesting a lack of thermotolerance. Intriguingly, we found that although persistently infected glial cells expressed HSP70 mRNA after heat stress, its expression rapidly disappeared during the recovery period. These observations indicated that persistent BDV infection may affect the stability of HSP70 mRNA. Finally, we found that the double-stranded RNA-dependent protein kinase (PKR) is expressed at a constant level in persistently infected cells with or without heat shock. Considering the interrelationship between HSP70 and PKR production, our data suggest that BDV infection disturbs the cellular stress responses to abolish antiviral activities and maintain persistence.


2005 ◽  
Vol 86 (11) ◽  
pp. 3163-3169 ◽  
Author(s):  
Malte Schwardt ◽  
Daniel Mayer ◽  
Ronald Frank ◽  
Urs Schneider ◽  
Markus Eickmann ◽  
...  

The X protein of Borna disease virus (BDV) negatively regulates viral polymerase activity. With a BDV mini-replicon system, 30 % inhibition of polymerase activity was observed at an X to phosphoprotein (P) plasmid ratio of 1 : 6 and 100 % inhibition at a ratio of 1 : 1. It was therefore hypothesized that (i) the X : P ratio in infected cells is not significantly higher than 1 : 6 to prevent complete inhibition of polymerase activity and (ii) X is not efficiently incorporated into viral particles, allowing efficient replication early in infection. To test these assumptions, a monoclonal antibody directed against BDV X was generated. Immunofluorescence analysis revealed co-localization of X with the nucleoprotein (N) and P in the nucleus, as well as in the cytoplasm of BDV-infected cells. Quantification of viral protein levels by Western blot analysis, using purified Escherichia coli-derived X, P and N as protein standards, revealed an X : P : N ratio in BDV-infected cells of approximately 1 : 6 : 40. However, only traces of X could be detected in purified BDV stock, suggesting that X is excluded from virus particles. These results indicate that X is a non-structural protein. The lack of X in virus particles may facilitate polymerase activity early in infection; however, the presence of X in persistently infected cells may result in partial inhibition of the polymerase and thus contribute to viral persistence.


Sign in / Sign up

Export Citation Format

Share Document